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1.  ABSTRACT 

        Microscale flow boiling presents a promising solution to emerging cooling requirements in many 
applications. Predicting flow boiling patterns could play a key role in the development of new engineering 
design tools for predicting heat transfer rates and pressure drops. A novel feed-forward neural network 
architecture was developed to classify flow boiling patterns in the microscale, in which each transition 
boundary was considered with its own Forward Neural Network within the overall architecture. The network 
was then compared to new flow boiling pattern data using HFE-7100 for heat fluxes and mass fluxes between 
3.2-132.4 kW/m² and 100-1000 kg/m²s, respectively. 

2. INTRODUCTION  

Studies investigating flow boiling in microchannels have shown capabilities of dissipating high heat fluxes in 
the order of 1 kW/cm2 [1]. The high heat flux dissipating capabilities of flow boiling lead to show promise in 
applications such as data centre cooling, fusion blanket reactor cooling, avionics cooling, satellite electronics 
cooling, hybrid and battery electric vehicle cooling and as potential uses in heat exchangers for hydrogen storage 
[2]. However, there is a need to conclude on predictive tools for heat transfer rates and pressure drops. The heat 
transfer rates and pressure drops are intrinsically linked to the prevailing flow boiling patterns. Consequently, 
the ability to predict transition boundaries of flow boiling patterns would allow the development of more 
accurate flow pattern-based heat transfer and pressure drop tools, which currently rely solely on empirical fits 
of data [3]. Machine learning is now a tool that is currently being utilised in almost every application that 
requires technological solutions [4]. Various types of neural networks have been utilised in the study of 
microscale flow boiling patterns; however, their use is often limited to the application of flow pattern image 
recognition. This work attempts to develop a novel feed-forward neural network architecture that is capable 
of predicting prevailing flow patterns using algorithm inputs that include operating parameters, fluid 
thermophysical properties and channel geometry. The algorithm success was compared to new experimental 
flow pattern data for HFE-7100. 

3. METHDOLOGY  

The novelty of the developed neural network is in the architecture, where each flow pattern transition 
boundary is considered using individual feed-forward neural networks to form the larger novel multiple feed-
forward neural network (M-FNN) architecture. The flow pattern transition boundaries considered included the 
bubble to slug, slug to churn and churn to annular transition boundaries for the four generic flow pattern 
categorisations presented in Fig. 1. A diagram representation of the architecture is presented in Fig. 2.  
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Fig. 1 Flow boiling patterns in small-micro scale passages: Single channel with for HFE-7100. 

The use of three individual FNNs for each transition boundary allowed for feature selection to be 
conducted in each boundary network, thus providing some insight into the physical parameters that are 
relevant to each transition. Overall, 11,349 data points were extracted and interpolated from the Brunel two-
phase high-fidelity data bank to train and test the algorithm. The final data split was 80% used for training 
and 20% used for testing, with a K=10-fold cross validation. The training data included water, HFE-7100, HFE-
7200, R-134a, R-245fa, R1234yf, for flow boiling in vertical tubes and horizontal single and multichannel 
geometries. Each transition boundary FNN was trained using data that was only relevant to that transition, 
e.g. only data for bubbly and slug flows was used to train the bubbly to slug transition boundary, which 
permitted the individual feature selection process.  A final FNN, labelled as the results network in Fig. 2, was 
placed after the transition boundary FNNs to account for any unexpected predictions for data that was 
outside the training range of the individual FNNs. The final algorithm architecture was developed through 
tuning of hyperparameters such as the number of hidden layers, the number of neurons in the hidden layers, 
activation functions, batch size, number of epochs, optimiser types and dropout rates. 

Fig. 2 Diagrammatic representation of M-FNN architecture. 
 

Assessments of algorithm performance based solely on data splits in which data from a single flow boiling 
experiment exists in both the testing and training data is a potential criticism of many existing publications. 
The idiosyncrasies that exist in the collected data during physical flow boiling experiments may result in an 
algorithm that overfits to data collected during that experiment and will perform very poorly when 
implemented in real world examples. Therefore, a better evaluation of the network is to compare the 
algorithm predictions to new experimental data. Consequently, new experimental flow boiling pattern data 
for HFE-7100 in a single microchannel were obtained for heat fluxes and mass fluxes between 3.2-132.4 
kW/m² and 100-1000 kg/m²s, respectively.  

4. RESULTS 

A comparison between the M-FNN algorithm and the new experimental data for HFE-7100 is shown in the 
flow pattern map presented in Fig. 3. The trends were well captured by the M-FNN algorithm, especially the 

Inputs Outputs 



UKHTC2024 

 

 

bubbly to slug transition,  although the vapour qualities at which the slug to churn transition and churn to annular 
transition occurred were under predicted and over predicted, respectively. However, the actual transition can 
be considered fairly similar to the model predictions when the propagated uncertainties of the vapour quality 
and mass flux are considered. Furthermore, the model can also be considered successful when the subjectivity 
in categorising flow patterns between researchers, which is difficult to quantify, is considered. 

 
Fig. 3 Comparison of neural network predictions to experimental data. 

Further predictions were also made in which all HFE-7100 and HFE-7200 data removed from the training 
data set to observe if the network is capturing global flow pattern transition mechanisms or if the algorithm 
is only using patterns taken for fluids with similar properties. The M-FNN was found not to accurately predict 
the flow pattern transitions for this case, a fairly significant limitation as it is only applicable if predicting for 
a fluid used during training. However, this is not a limitation of the process adopted here, since the solution 
is to harvest data from literature and obtain a larger and more continuous data set to enhance the 
performance of the algorithm. 

5. CONCLUSIONS 

A new M-FNN type model was developed to predict flow boiling patterns in microchannels using 11,349 
data points that were taken and extrapolated from the Brunel University London two-phase high-fidelity data 
bank. The algorithm was compared to the experimental data and found to perform fairly well, with the caveat 
that it could only do so whilst some data for HFE-7100 and HFE-7200 existed in the training set. We will be 
training the algorithm with a wider range of data including different fluids that will help get to a working 
solution of predicting flow pattern transition boundaries for a range of fluids covering both water and 
refrigerants. This could be better that currently available methods of predicting transition boundaries. We 
also expect to present the methodology and the final algorithm in an easy to use package.  
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