
Proceedings of the 18th UK Heat Transfer Conference 

9-11 September 2024, Birmingham 

UKHTC2024 

 

*Corresponding Author: cotta@mecanica.coppe.ufrj.br 

 

 

 

            

RECENT PROGRESSES ON FUNDAMENTALS AND APPLICATIONS OF 

COMPUTATIONAL-ANALYTICAL INTEGRAL TRANSFORMS 

Renato M. Cotta1,2,*, Paulo Couto1, Gianfranco M. Stieven1, Carolina P. Naveira-Cotta1 

 

1LabMEMS, Mech. Eng. & LRAP, Petr. Eng., POLI/COPPE, Federal University of Rio de Janeiro, Brazil 

2Navy Research Institute, IPqM-CTMRJ, DGDNTM, Brazilian Navy, Brazil 

 

1.  ABSTRACT 

The present lecture reviews the analytic-based methodology known as the Generalized Integral Transform 

Technique (GITT) for convection-diffusion problems, focusing on recent progresses on fundamentals, such as 

the single domain formulation and the nonlinear eigenvalue problem base, which are more closely reviewed. 

Also, its recent application in direct-inverse analysis in petroleum reservoir simulation is illustrated.  

2. INTRODUCTION  

The integral transform method is a well-known analytical methodology for the exact solution of linear partial 

differential equations in mathematical physics, with roots in the separation of variables approach proposed by 

Fourier in the first half of the 19th century, and in the work of Koshlyakov in the first half of the 20th century, 

followed by the extensions advanced by Luikov, Olçer, Ozisik, and Mikhailov, among others. Despite its wide 

use and evolution, the classical approach does not apply to several non-transformable problems, such as most 

of the nonlinear formulations in transport phenomena. For this reason, this approach was progressively 

generalized to a hybrid computational-analytical structure, known as the Generalized Integral Transform 

Technique (GITT) [1,2], which allows for a flexibilization in the numerical solution of the resulting coupled 

transformed ordinary differential systems. The GITT has been advanced to handle different classes of problems 

in heat and fluid flow, previously only solvable by purely discrete approaches, offering advantages in terms of 

accuracy, robustness, and computational effort at the price of further analytical involvement. It has been 

extensively adopted as a benchmarking tool but also as a computational tool in itself in CPU-intensive tasks, 

such as inverse problem analysis, optimization, and stochastic simulations. This lecture summarizes the 

formalism in the consolidated GITT approach and briefly discusses more recent progresses that extend its 

applicability. A single-domain reformulation strategy was proposed in [3], originally aimed at solving 

conjugated heat transfer problems when solid and fluid subregions would require separate integral 

transformations or solving coupled eigenvalue problems. The strategy is based on rewriting the convection-

diffusion equations for each subdomain, with their respective physical properties and source terms, as one 

single formulation for the whole region, with spatially variable coefficients that vary abruptly at the interfaces 

of the subregions, recovering the heterogeneities. A new formalism was proposed [4] based on a nonlinear 

eigenvalue problem choice, carrying along to the eigenfunction expansion based on the nonlinear behavior of 

the original problem coefficients and operators. This more general solution path provides a formal solution 
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that encompasses traditional formalism with a linear eigenvalue problem, as shown below and leads to 

improved convergence rates. Recent applications have focused on CPU-intensive problems, such as in inverse 

problem analysis, when numerous computational runs of the direct problem are, in general, required. The 

merits of the hybrid approach are then more evident in both precision and computational speed. The general 

formalism in the GITT is next presented, followed by an illustration of its application in direct-inverse problem 

analysis. 

 

3. PROBLEM FORMULATION AND FORMAL SOLUTION 

Consider a general convection-diffusion problem for M coupled potentials, Tk(x,t), k=1,2,...,M, with a nonlinear 

velocity vector u(x,t,T) and nonlinear source terms Pk(x,t,T) and ϕk(x,t,T): 
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Problem (1-3) can be rewritten with characteristic linear coefficients that have only x dependence, i.e., w*(x), 

K*(x), d*(x), α*(x) and β*(x), while the modified nonlinear source terms then incorporate the remaining 

nonlinear portions of the equation and boundary conditions operators, including the nonlinear convection term: 
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The characteristic linear coefficients in Eqs. (4-6) lead to the preferred decoupled linear eigenvalue problems, 

obtained from the separation of variables applied to the homogeneous version of the problem (4-6), as: 
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Then, the following integral transform pair with the normalization integrals is defined: 
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Integral transforming Eq. (4) through the operator 
,( ) ( )k i

V
dv−  x , leads to the ODE system for the transformed 

potentials, , ( )k iT t , and corresponding transformed initial conditions, written as: 
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4. APPLICATION 

Core flood experiments are critical for understanding the dynamics of multiphase flows in heterogeneous 

porous media and allow researchers to simulate and study the effectiveness of various oil recovery techniques 

from petroleum reservoirs. These experiments provide important data for inverse problems, enabling the 

determination of intrinsic properties of the plug subjected to fluid flow, such as relative permeabilities. The 

physical problem involves a heterogeneous plug saturated with oil which undergoes axial water injection at 

one end, producing oil and water (after breakthrough) at the opposite end. Selected core samples from actual 

reservoirs (Fig.1) have been studied through microtomography and their porosity was properly mapped (Fig.2). 

The direct problem solution is obtained via GITT, for both one- and three-dimensional heterogeneous media 

with capillary pressure effects, and its convergence is illustrated in Fig.3, for N=30, N*<25. For the inverse 

problem, the Monte Carlo via Markov Chain (MCMC) method was employed, using synthetic experimental 

data, and the estimated water and oil relative permeabilities are shown in Fig.4, against the exact functions. 

 

 
Fig.1 – Selected reservoir plug samples considered Fig.2 – Typical variable porosity: microtomography 

  
Fig.3 – Convergence of GITT for water saturation Fig.4 – Estimated and exact relative permeabilities 
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