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EXECUTIVE SUMMARY 

The goal of the CogWatch system is to monitor automatically the progress of an individual 
executing an everyday task, and to intervene with an appropriate cue if an error occurs or if 
the system believes that an error is imminent.  The application is rehabilitation for stroke 
patients.  In order to achieve this goal, the objects involved in the task are instrumented so 
that their use can be measured.  In the first prototype system, which focuses on tea-making, 
the kettle, milk container and mug are each fitted with a CogWatch instrumented coaster 
(CIC) containing an accelerometer and three force sensitive resistors (FSRs).  This 
information may be supplemented with information about the participant’s hand position, for 
example, using the Microsoft Kinect system.  An automatic activity recognition (AAR) 
system takes integrated data from these sensors and uses it to recognise component sub-
goals of the task, plus additional information such as the time taken to complete the sub-
goal. This information is passed to the task model (TM), which uses it to infer the 
participant’s state in the task and to accumulate a cost, based on the time taken to reach 
this state, and whether the participant’s strategy deviates significantly from an optimal 
strategy. The cost function is used to infer likely failure. 

This report describes the approaches to AAR and TM in the first CogWatch prototype.  A 
TM based on a Markov Decision Process (MDP) has been implemented, and is described in 
Section 2.2.  The model has been tested and verified using synthetic AAR data.  The 
notions of optimal strategy and optimal plan, which are used in Section 3 to define cost 
functions, are introduced. A shortcoming of the MDP-based approach is that it is not well-
suited to dealing with ambiguity.  Ambiguity arises because the AAR is imperfect and makes 
classification errors.  A potential solution is described where the MDP is replaced by a 
Partially Observable MDP.  The basic theory of POMDPs is presented in Section 2.3. 

Section 3 is concerned with failure prediction, and in particular the definitions of the online 
cost functions which will be used to detect problems in the implementation of a task. 

The rationale for choosing parallel, HMM-based sub-goal detectors for activity recognition in 
CogWatch prototype 1 (originally given in deliverable D3.1), is reviewed in Section 4.  
Section 5 presents the results of a preliminary evaluation of sub-goal detection.  The 
problem of detecting the “pour milk into jug” sub-goal is investigated, using only the outputs 
from the CIC attached to the base of the jug.  The system uses a multiple state “left-right” 
HMM to capture the sequential structure of the “pour” activity, and single state HMMs with a 
multiple component  GMM state for the “toy” and “rest” activities. 

The experiments investigate approaches to pre-processing the CIC sensor data.  Simple 
thresholding is applied to the outputs of the FSRs, to overcome variability in the FSR data 
between different instances of an FSR-augmented object at rest.  The effects of smoothing 
and differentiation of the FSR outputs are also investigated, and a number of additional 
types of pre-processing are suggested.  So far, the recognition accuracy achieved is 
approximately 70%.  However there are good reasons to believe that this is an 
underestimate of the potential performance.  For example, the “toying” data is 
unconstrained and contains actions very similar to pouring, which would be unlikely in real 
data where the jug which is being “toyed” with contains milk.  Also, the classifier uses only 
information from the CIC attached to the jug, whereas in practice the data from the CIC 
attached to the ‘receiving’ mug would also be used. 

Finally, the implementation of a real-time AAR is discussed in Section 6. 
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1. INTRODUCTION 

1.1 Purpose 

This deliverable describes the current status of action prediction algorithms in the 
CogWatch project, leading up to Prototype 1. 

 

 

Figure 1: General architecture of the CogWatch system (taken from 
deliverable D2.2.1) 

1.2 Action prediction 

‘Action Prediction’ is a slight misnomer.  The purpose of the techniques described in 
this deliverable is to take the data from the sensors attached to the task objects 
which are being used by a participant engaged in the task, to interpret this data in 
terms of the sub-goals that the participant is trying to achieve, and to detect when 
the sequence of sub-goals that is being executed by the participant is unlikely to 
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result in successful task completion.  The term ‘action prediction’ refers to the ability 
of the system to compare the participant’s actions with those predicted by the 
system, in order to predict or detect errors, or to increment a Cost Function.  In the 
current phase of the project the task is tea making, the objects are the kettle, milk 
jug, mug and other items involved in tea-making, and the sensors are the 
accelerometers and force sensitive resistors in the CogWatch instrumented coaster 
(CIC) attached to the objects. 

In terms of Figure 1, the sensor outputs are delivered via the Fusion Module to the 
VTE Information Handler, from where they are accessed by the Automatic Activity 
Recognition (AAR) algorithm.  The outputs from the AAR algorithm, namely sub-
goals of the tea-making task together with timing information, are passed back to the 
VTE Information Handler, from where they are accessed, in turn, by the Prediction 
Algorithm/Task Model (TM).  The outputs of the TM are data structures which 
indicate that the task has been completed or, in the event of an error, the type of 
error that has occurred and the identity of the cue that should be presented to the 
participant.  The TM includes methods for Failure Prediction, based on costs 
incurred for excessive sub-goal completion times, choice of non-optimal strategies 
at different stages of the task, or deviation from a task execution plan defined by, for 
example, a clinician 

The report is organized as follows: 

Section 2 (Action Prediction) is concerned with the CogWatch Prototype 1 Task 
Model.  The current implementation of the TM as a Markov Decision Process (MDP) 
is described in section 2.2.1.  The notions of a cost function (2.2.1.2), an optimal 
strategy (2.2.1.3) and an optimal plan are defined.  A problem with this type of TM is 
that it is not well suited to dealing with uncertainty in its inputs, due in this case to 
classification errors in the AAR.  More precisely, the information passed to the TM is 

the output a of the AAR due to the sub-goal A performed by the participant.  The 

identity of the true sub-goal A is not available to the TM.  Therefore an extension of 

MDPs, known as Partially Observable MPDs (POMDPs) is introduced.  The theory 
and proposed implementation of POMDPs is presented in section 2.3. 

Section 3 is concerned with Failure Prediction.  This refers to the use of cost 
functions and the accumulation of cost, to anticipate user errors. 

Section 4 (Recognition Algorithms) reviews the approach to sub-goal detection 
based on Hidden Markov Models (HMMs) that was presented in deliverable D.3.2.1. 

Section 5 presents the results of preliminary experiments on sub-goal detection 
using HMMs applied to the output of the CIC.  The specific problem that is 
addressed is detection of the “pour milk into mug” sub-goal.  Initial recognition 
accuracies of up to 70% are achieved. 

Section 6 describes the status of the implementation of the AAR. 

Section 7 presents our conclusions. 
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2. ACTION PREDICTION 

2.1 Action prediction in the first CogWatch prototype 

Action prediction in the first CogWatch prototype is the responsibility of the Task 
Model (TM).  The inputs to the TM are sub-goal labels, plus sub-goal execution time 
information, that are output from the automatic action recognition (AAR) system. 

This information is passed to the TM via the VTE.  The sub-goals correspond to the 
second level of the tea making task tree from D1.1 “Report on scenarios”.  The 
outputs from the TM are “cue prompts” that are passed to the VTE Information 
Handler in the event that the participant makes an error or an error is anticipated by 
failure prediction, or an indication that the task has been completed successfully.   

Options for the TM and the AAR systems were discussed in detail in D3.1 “Report 
on action recognition techniques” and the rationale was given for the choices of the 
TM and AAR system for the first prototype. 

2.2 The Task Model 

As explained in D3.1, the TM in CogWatch Prototype 1 is based on a Markov 
Decision Process (MDP).  This is motivated by the use of MDPs in spoken dialogue 
processing (SDP, see, for example, [3]).   

2.2.1 Markov decision processes (MDPs) 

2.2.1.1 Formal definition 

Formally, a MDP comprises: 

 A finite set S of N states. In SDP these are often referred to as belief states,  

 A finite set A of actions,  

 For each pair of states s1 and s2 in S and action a,  

 Pa(s1,s2) is the probability of being in state s2 at time t+1 given state s1 at 

time t and that action a was taken  

 Ra(s1,s2) is the corresponding reward/cost  

2.2.1.2 The Cost Function 

The cost function Ra(s1,s2) provides a mechanism through which human judgements 

about the importance of different types of behaviour can be incorporated into the 
MDP.  In this way the cost function becomes the means whereby the MDP can be 
transformed into a more psychologically plausible model.  The details of the cost 
function are yet to be decided, however it is envisaged that it will include: 

 A penalty based on the time taken to complete the sub-goal. 
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 A penalty for non-fatal deviations the optimal strategy (see 2.2.1.3 below).  
This is a penalty which is incurred each time the subject executes a sub-goal 
in a particular state, which is different from the optimal strategy at that state. 

 A penalty for repeating a sub-goal (where repetition is not a fatal error).  For 
example if the subject executes a sub-goal “add milk”, then executes one or 
more other sub-goals, and then executes a second “add milk”, this might 
incur a penalty even though it is legal. 

Cost functions are discussed in the context of Failure Prediction in Section 3. 

2.2.1.3 The Optimal Strategy 

In the context of MDPs, a strategy is a function π:S → A.  In other words, for each 

state s, π(s) is an action (sub-goal). 

Given a strategy π a function Vπ  can be defined on the state space S such that for 

any state s, Vπ(s) is the minimum accumulated cost of completing the task given 

that the participant is currently in state s and follows the strategy π. 

The optimal strategy, denoted by π*, is the strategy π for which the cost function Vπ* 

is minimised. 

Example algorithms for computing the optimal strategy are described in [3]. Our 
current implementation of the MDP-based TM uses the Monte Carlo Algorithm with 
exploring starts described in [3]. An important consideration is that once the cost 
function has been defined the optimal strategy can be computed before the MDP is 

used and the optimal action at each state s, π*(s), can be stored as part of the state 

s. 

The cost functions that are used to compute the optimal strategy are based on 
training material and on human intuition.  The objective is that the cost function 
should have the property that large costs are indicative of task failure, so that errors 
can be anticipated and cues can be provided in a timely manner. 

2.2.1.4 The Optimal Plan 

The optimal plan is a strategy defined by a human expert, for example a clinician 
that prescribes the order in which the sub-goals should be executed.   

The optimal plan could be entered by hand.  Alternatively the clinician could 
demonstrate the task to the participant in the presence of the CogWatch system.  In 
this case the AAR and TM would run in a special mode, where the sequence of 
states and sub-goals would be recognised and recorded.  Once the clinician had 
verified that the interpretation of the task was correct, the participant would be 
required to adhere to the optimal plan. 
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2.2.2 Interpretation and operation of the MDP 

In the tea-making task, the states of the MDP correspond to sequences of sub-goals 
that can be extended to a complete, successful instantiation of the tea making task.  
Associated with each state is a set of potential state transitions, corresponding to 
sub-goals which are valid extensions of that state.  For example, in the case of the 
extended tea-making task (tea with milk and sugar) if the current state corresponds 
to [“fill kettle”, “boil water”, “add water to cup”] then potential transitions would be to 
the states corresponding to: 

 [“fill kettle”, “boil water”, “add water to cup”, “add teabag to cup”] 

 [“fill kettle”, “boil water”, “add water to cup”, “add sugar to cup”] 

 [“fill kettle”, “boil water”, “add water to cup”, “add milk to cup”] 

 [“fill kettle”, “boil water”, “add water to cup”, “add water to cup”]  

The final transition is possible because it has been decided that it is only if the 
patient repeats “add water to cup” more than twice that an error is detected and a 
cue is raised. 

Suppose that the system is in state s1 and a sub-goal a is output from the AAR and 

passed to the TM by the VTE.  The TM looks to see if a is a valid extension of s1.  If 

this is the case, and if s2 denotes the state obtained by extending s1 with the action 

a, then Pa(s1,s2) = 1, the transition is taken and the system moves into the 

corresponding new state s2.   

If the sub-goal that is output from the AAR is not a valid extension of the current 
state, or the cost function exceeds a given value (for example, because of the delay 
in completing the next sub-goal, see section 3) then the faulty current state is 
passed to the TM’s error recognizer which identifies the type of error made, and the 
sequence of cue prompts that should be passed to the VTE Information Handler.  
The data structure of the cue is a vector containing the ID of the cue that should be 
sent to the subject, its priority (Fatal, non Fatal…or Level_1, Level_2…), its number 
(CA#1, CA#2…), and the next legal action predicted by the algorithm, if applicable. 

The error types, the corresponding cues, the time constraint within the latter, and the 
impact of the use of specific participant’s inputs during particular moment during the 
task, have been agreed with psychologists in the project. 

2.2.3 Implementation 

An MDP-based TM has been implemented in Python and C#.  The TM has been 
tested successfully using outputs from a simulated AAR. 

2.3 Coping with uncertainty – Partially Observable MDPs 

A major problem with an MDP-based TM is that it is not well equipped to 

accommodate errors in the output of the AAR system.  If the system is in state s1 



Confidential 

  

 

 

Grant Agreement # 288912       Cogwatch – UOB-EECE/TUM – D3.3.1                        Page 16 of 45 

 

 

then in a conventional MDP the probability P(s2 | s1, A) of moving to state s2 

depends on s1 and the sub-goal A that has been executed.  In practice, A is 

unknown and the TM must be satisfied with a, the output the AAR system when sub-

goal A was performed by the participant.  In this sense the sub-goal is only partially 

observable, since the true sub-goal can only be inferred, and not known, from the 
recognised sub-goal. This requires an extension of a MDP called a Partially 
Observable MDP or POMDP. 

2.3.1 POMDPs 

Given a sub-goal a output from the AAR, we need to compute P(s2|s1,a).  This can 

be achieved by factorization according to A, the true sub-goal executed by the 
participant: 

       

   
112

1121212

,|,|

,|,,|,|,,|

saAPAssP

saAPasAsPasAsPassP

A
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   (1) 

The final approximation assumes that P(s2|s1, A, a) = P(s2|s1, A), in other words if 

the true sub-goal A is known then the output a of the AAR does not exert any 

additional influence on the probabilities of state transitions.  The probability 

P(s2|s1,A) is known, and the probability P(A|a,s1) can be computed from Bayes’ 

rule: 
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The probabilities on the right-hand side of the equation can be computed as follows: 

 If it is assumed that the output a of the AAR depends only on the input A to 

the AAR and not on the current state, then P(a|A,s1) = P(a|A).  This 

probability can be obtained from the AAR confusion matrix, which can be 
determined empirically from activity classification experiments. 

 The probability P(A|s1) is the probability that the participant executes a 

particular sub-goal when in a particular state.  In other words, given that the 
participant has already completed the sequence of sub-goals corresponding 

to state s1, what is the probability that the participant’s next sub-goal is A.  

This will be estimated from the clinical trials that are currently being 
conducted. 

 Finally,      
111

|,|| sAPsAaPsaP
A

 . 

Note that all of these probabilities can be pre-computed. 
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2.3.2 POMDP computations 

In the MDP-based TM, the state of the TM is unique and known after each input 
from the AAR.  However, this is not the case for the POMDP-based TM.  Instead the 
state of the TM after the n

th input from the AAR is a set of probabilities 

  SssP
n

:  over the states of the underlying MDP. 

Suppose that a sub-goal a is the n
th

 output from the AAR.  For each state s2, the 

probability Pn(s2) is updated according to: 

     assPsPsP
s

nn
,|

12112

1

 
 , 

where P(s2|s1,a) is calculated from equation (1).  In this way the state of the TM (i.e. 

the accumulated probabilities for each of the states of the underlying MDP) is 
updated after each input from the AAR. 

2.3.3 Errors and task completion in the POMDP-based TM 

In the case of the MDP-based TM, errors are detected when the cost function 
exceeds a particular value or the current input from the AAR is not a valid extension 
of the current state.  For a POMDP-based TM, the case where there is no valid 

extension of the current state after the n
th

 input corresponds to Pn(s) being small 

(perhaps below some threshold ε>0) for all states s.   

Similarly, for a MDP-based TM the task is complete when the model reaches the 
final ‘end’ state.  For a POMDP-based TM, task completion will occur when the 
probability of the final ‘end’ state is sufficiently high compared to that of other states. 

Experiments will need to be conducted using simulated data with known levels of 
AAR system error to determine how sensitive the POMDP is to AAR error. 

2.3.4 Confidence 

For a POMDP-based TM it is also possible to define notions of confidence.  For 

example, if after the n
th

 AAR input there is a state s for which Pn(s) is much greater 

than Pn(r), for all states r ≠ s, then we can be confident that the system is in state s, 

but if Pn(s) is similar to Pn(r) it is not possible to be confident that the system is in 

state s. 

Intuitively, confidence will depend on the accuracy of the AAR.  If the AAR is very 
inaccurate then after each sub-goal input to the TM the probability will be distributed 
between different states.  In contrast, if the AAR error rate is small then these 
probabilities will focus on particular states.  In the limit, if the AAR error rate is zero 

then there is no longer any ambiguity between the true sub-goal A and the 

recognised sub-goal a, and the POMDP becomes an MDP 
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2.3.5 Implementation and testing 

A POMDP-based TM will be implemented and tested in the next phase of the project. 

Initial testing will be done using a simulated AAR, driven by a sub-goal confusion 
matrix corresponding to a known AAR error rate.  In this way it will be possible to 
measure how uncertainty in the AAR output corresponds to uncertainty in the TM, 
and to determine how much AAR error the POMDP-based TM can accommodate. 

2.1 Summary of section 2 

This section has described an approach to task modelling based on Markov 
Decision Processes (MDPs), which with be used in the first CogWatch prototype.  A 
MDP-based TM has been implemented and verified. 

A limitation of the MDP-based approach is that it is not well-suited to coping with 
ambiguity in its inputs.  In this application ambiguity arises as a consequence of 
classification errors in the AAR.  Partially Observable MDPs are proposed as a 
solution to this problem.  The theory and practice of POMDP-based TM is discussed. 
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3. FAILURE PREDICTION 

3.1 Failure prediction in future CogWatch prototypes 

Another requirement of the Task Model is failure prediction. For the purpose of the 
project, we would like the TM to be able to detect when the participant is unlikely to 
achieve the goal successfully. Human faults give rise to errors that can be 
manifested in two kinds of ways: well known “factual errors” that are implemented in 
the TM to be systematically cued when they happen (e.g., perseveration error, 
anticipation error, omission error, etc.); and faults that will appear as deviations from 
an expected behaviour during the trial. 

Currently, the TM is an “after-the-fact” system, which means that a factual error has 
to be made in order for the TM to react and provide specific cues. But as written in 
[4]: 

“With this kind of reactive (or “after-the-fact”) fault-recovery, the impact of the 
fault is not necessarily averted. This approach also fails to take advantage of 
any pre-failure indicators or symptoms that might be present in the system. 
While analyzing these indicators might not avert the fault, the results of this 
analysis might have allowed recovery to be initiated faster or proactively, 
thereby mitigating the impact of the fault on the application/system.” 

Thus, in our case, the failure prediction’s aim will be to collect the information in 
advance on any participant’s abnormal behaviour that could lead to a system fatal 
failure, so that the failure can be predicted. 

3.2 Approaches 

3.2.1 Methods based on machine learning 

Measures to detect anomalous system behaviour can be implemented using 
different machine learning or pattern processing techniques such as: Support Vector 
Machine (SVM) [5], Similar Events Predictions (SEP) [6], or genetic-based machine 
learning systems [7]. 

All of these methods evaluate the system’s current state in a different way, but share 
the same ability to learn from previous experience in order to predict future events. 
This ability is based on the fact that all those techniques use supervised machine-
learning methods, which implies the necessity to use a training set of labelled data 
in order to build the model they rely on. For example, in [4], the model is trained with 
labelled commercial telecommunication data. Then, during the online test, the 
system is able to base its evaluation of the testing data on the special patterns 
leading to failures that it learned during the offline training. 

Training data are currently not available in the CogWatch Project, consequently 
none of those methods can be applied for the moment. Nevertheless, when a 
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sufficient amount of data has been collected, it will be interesting to find how those 
methods can be used in the context that we are working in. 

Fulp et al. [5] and Salfner et al. ([6], [8]) used system log files as input data in their 
system. These log files contain messages about the system’s state, and the analysis 
of the latter permitted them to predict future failures. In our case, the input data will 
include the actions made by the participant, and the time taken to achieve those 
actions. Characteristic patterns in time-labelled sequences of actions may make it 
possible to predict participants’ failures. Weiss wrote in [7] that it is often important 
to be able to predict future behaviour based on past data.  The ability of the TM to 
keep the history of the participants’ past actions should be exploited to predict a 
potential future failure.  

For one of those methods to be used in a future prototype, its ability to predict 
failures online in real-time will need to be tested, as well as its reliability. 

These issues will be raised again and developed later as training data becomes 
available.  

3.2.2 Knowledge-driven failure prediction 

In the absence of sufficient data, the first prototype TM will base its failure prediction 
on parameters supplied using expert knowledge.  While the performance of the AAR 
can be measured relatively easily, the values of parameters such as cost functions 
and their implications for error prediction will need informed estimation.  For 
example, we could base our approach on the hypothesis that a fault manifests as 
increasingly unstable behaviour before escalating into a failure [6]. This hypothesis 
could be added to an adaptation of the assumption Salfner used in his approach in 
[8]: 

“The fundamental assumption in my approach is, that the occurrence of 
failures can be predicted by identifying special patterns of errors the system is 
experiencing. This assumption is based on the fact, that dependencies 
among the components of systems exist.” 

In the case of the CogWatch prototype, cost could be incurred by deviation from the 
normal time taken to perform an action, or deviation from the optimal strategy.  
Failure would be predicted when these deviations go above specific levels, defined 
in consultation with psychologists. 

Thus, without the training data that would permit us to test failure prediction based 
on machine-learning techniques, the idea is to use a network of cost functions that 
will allow monitoring of symptoms that could lead to future participants’ failures, and 
alert or cue them before the failures actually happen. The interpretation of this cost 
will have to be discussed with psychologists: the decision to consider an abnormal 
behaviour as an error that should be cued will be linked to exceeding 
psychologically plausible thresholds. 
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3.3 Online Cost Function Network 

As explained in 2.2.1.3 the TM already computes a cost function offline, and the 

Monte Carlo Algorithm uses this to find the optimal strategy (action), π
*
(s), that the 

participant should execute at state s in order to complete the task.  

In online failure prediction, a network of cost functions will be used; taking into 
account all of the inputs that the TM will have access to online during the trials. At 
the same time, the online cost function clearly needs to be closely related to the 
offline function for consistency. 

3.3.1 Definition 

In [9], Li wrote: 

“The construction of cost functions should rely on one’s knowledge of the 
system and common sense. There is no absolute right or wrong for cost 
functions. One can only say if it is reasonable or not.” 

The online cost functions are functions that return the “price” of the participant’s 
actual decisions and actions during the task, compared to what she or he is 
expected to do.  

Denote the TM input space (i.e., the data that the TM has access to during the task), 

by I. In the current implementation I consists of pairs i=(a,d) where a is the sub-

goal output by the AAR and d is its duration.  Then the online cost function network 

could be defined as an association of three partial cost functions, related to the time 

taken to achieve an action ζ(i), the participant’s choice of action ρ(i) compared with 

the action suggested by the optimal strategy, or the ability of the participant to follow 

a given plan p, γ(i), plus an additional cost that refers to the ability of the participant 

to respect hidden and optimal rules δ(r).  In other words: 

       ctaiMCI
time

 , ,,0:  , depends on the time t taken to 

execute sub-goal a 

       ctaiMCI
yoptStrateg

 , ,,0:  , depends on whether the sub-goal 

a output by the AAR matches the optimal strategy 
* , 

       ctaiMCI
optPlan

 , ,,0:  , depends on whether the sub-goal a 

output by the AAR matches the optimal plan p, specified by the participant or 

a clinician, and 

       ctaiMCI
optRule

 , ,,0:  , 

where MCtime, MCoptStrategy, MCoptPlan and MCoptRule denote the maximum values 

taken by ζ, ρ, γ and δ respectively. Before explaining the partial cost functions and 

the associated variables, let us consider that we also have a Global Cost Function 
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(GCF) Γ taking all these parameters into account.  The latter could be defined as 

followed: 

           iiiiΓi, ΓRΓ:I  ,,,   . In other words Γ(i) is a 

combination of the previous four cost functions. 

3.3.2 Explanations 

3.3.2.1 ζ(i): Ability to perform the task in a short amount of time 

The output i = (a,t) of the AAR includes the recognised sub-goal a, and t - the time 

the participant takes to achieve that sub-goal. Shared online with the TM, this data 
will permit analysis of the participant’s ability to complete a task in a reasonable 

amount of time. The ‘local’ cost associated with sub-goal duration t is ζ(i), where 

i=(a,t).  

The accumulated ‘duration cost’ up to state s, denoted by  s , can then be 

calculated by      iss   ' , where s’ is the previous state i = (a,t) is the 

output from the AAR at state s’, and s is obtained from s’ by addition of the sub-goal 

a. 

The decision about whether or not to indicate an error and output cue prompt will 

depend on Maxdur and Mindur, the maximum time allowed for the task and minimum 

time to complete the task, respectively.  These are defined in consultation with 
psychologists.  

3.3.2.2 ρ (i):  Ability to follow the optimal strategy 

Suppose that i=(a,t) is the output of the AAR while the system is in state s. During 

the task, the TM will have access to this observation and to the optimal strategy 

π
*
(s) computed offline by the Monte Carlo Algorithm.  Thus the TM will be able to 

compare a and π
*
(s) and modify the GCF Γ and the online local cost function ρ(i) 

accordingly.  The cost incurred for executing a sub-goal a when the optimal strategy 

is π
*
(s)  ≠ a will be defined in consultation with psychologists. 

The more the patient deviates from the optimal strategy during the task, even if the 
action taken doesn’t raise any error, the more this accumulated value of this online 

partial cost function will tend to return a high partial cost value c.  Let the 

accumulated cost function due to deviation from the optimal strategy at state s be 

denoted by  s , then by analogy with 3.3.2.1: 

      iss   ' . 

The decision about whether or not to indicate an error and output a cue prompt will 

depend on TπDev the maximum number of deviations from the optimal strategy that is 

allowed.  This parameter will be set in consultation with psychologists.  
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3.3.2.3 γ
 
(i):  Ability to follow an imposed plan 

This partial cost function relates to Patient Profiling and corresponds to a special 
case of deviating from the optimal strategy.  The ‘Patient Profiler’ will permit the 
clinician to record the plan (i.e., sequence of actions) that he or she would like the 
patient to follow (this is referred to as the ‘optimal pan’).   

Intuitively, deviation from the optimal plan p should incur cost.  By analogy with 

3.3.2.2, the cost γ
 
(i) incurred for executing a sub-goal a in state s when the optimal 

plan is p(s)  ≠ a will be defined in consultation with psychologists. 

The accumulated cost due to deviation from the optimal plan at state s is denoted by 

 s , and defined by      iss   ' . 

The decision about whether or not to indicate an error and output a cue prompt will 
depend on TpDev the maximum number of deviations from the optimal path that is 
allowed.  This parameter will be set in consultation with psychologists.  

3.3.2.4 δ(r):  Ability to respect hidden rules 

Hidden rules are all of the rules that the clinicians or the psychologists would like the 
TM to implement, and which will have a negative effect on the GCF and the online 
partial cost function if the participant does not respect them. These rules are called 
hidden because the participant will not necessarily be aware of their existence.  

For example, a hidden rule may be linked to the inability of the patient to focus on 
one specific sub-task before beginning another one. In practice, if one imagines that 
the participant is performing the low level actions related to a specific subtask (e.g., 
the patient is manipulating the kettle in order to heat the water), but the participant 
then stops before the completion of the highest level action (i.e., heat water) in order 

to begin another sub-task (e.g., add sugar), δ(i) and the GCF Γ may return a higher 

partial cost than they would have done if the participant had finished the 
manipulation of the kettle before manipulate the spoon to add sugar.  

At present this type of rule breaking will not be detected because the output of the 
AAR for the first CogWatch prototype is at the sub-goal level.  However, in future 
versions of the system which include models of lower-level features, this type of cost 
function will become increasingly relevant. 

3.3.2.5 Γ: The Global Cost Function 

While all the other partial cost functions are directly linked to parameters such as 
time, deviation from the optimal strategy, deviation from the optimal plan, or the non-
respect of hidden rules, and return partial cost exclusively associated to them; the 
GCF would return a cost representing how “globally” the participant deviates from a 
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common or optimal scheme.  A cue could be raised if this cost goes above a specific 

threshold Tglobal.  

To do so, the cost of the GCF could be a simple weighted mean, such as: 

 
       

4321

4321

wwww

swswswsw
s







   

Here, wi for i = 1,2,3,4 are the weights chosen by the designer in order to give a 

specific importance to each parameter.  

Other non-linear combinations of the individual costs could also be considered. 

3.3.2.6 The cost function 

Rather than simply comparing the various accumulated cost values with thresholds, 

a cost function could be computed based on the TM’s interpretation of  ,  ,  and 

 , which are related to the participant’s efficiency during the trial.  Ideally, the cost 
function should be psychologically plausible, which means that it should return a low 
cost value to sequences of actions that a control user (or a clinician) would consider 
to be a successful achievement of the goal, and a high one to sequences which are 
unlikely to result in successful goal completion. 

3.3.3 Implementation and testing 

The utility of online cost functions based on no training data, and using handcrafted 
thresholds for failure prediction is uncertain. However, as training data becomes 
available it will be possible to tune and adapt these online cost functions to the 
statistics learnt with the data. 

3.4 Summary of section 3 

This section has discussed approaches to online failure prediction using the 
information that will be available in a MDP or POMDP-based TM.  Failure prediction 
is based on whether the values of various cost functions exceed pre-defined 
thresholds.  The proposed cost functions measure the time taken by the participant 
to complete a task, the number of times that the participant’s actions deviate from 
the optimal strategy, the number of times that the participant’s actions deviate from 
a prescribed plan (if one has been defined) and the number of times that the 
participant breaks one of a set of ‘hidden’ rules. 

As training data become available from the trials that are being conducted with 
controls and patients, it is hoped that it will be possible to use these measures as 
the basis of robust and psychologically plausible approaches to failure prediction. 
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4. RECOGNITION ALGORITHMS 

4.1 Automatic activity recognition (AAR) 

Options for the AAR system were discussed in detail in D3.1 “Report on action 
recognition techniques” and the rationale was given for the choices of the AAR 
system for the first prototype.  The AAR system is described in detail here and also 
summarised in deliverable D3.2.1 “Report on predictive models 1”.  

The inputs to the AAR system are the outputs of the Fusion Module (Figure 1).  The 
Fusion Module synchronises the outputs from the instrumented devices (for 
example, the CogWatch instrumented coasters (CICs)) attached to the objects 
involved in the task, and synchronises this with the outputs of other sensors, such 
as hand-position data detected by Kinect.  It collates all of this data into a single 
feature vector, at a typical frame rate of 200 Hz.   

The outputs from the AAR system are sub-goals corresponding to the second level 
of the tea making task tree from D1.1 “Report on scenarios”.    These are passed to 
the TM via the VTE. 

4.2 Hidden Markov Model (HMM) based sub-goal detection 

 

 

Figure 2: Schematic diagram of HMM-based sub-goal detection (taken 
from CogWatch deliverable D3.1). 

The arguments for using an HMM-based activity detection system in the first 
CogWatch prototype were presented in D.3.1 “Report on action recognition 
techniques”.    
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A schematic diagram of the sub-goal detector is shown in Figure 2.  The figure 
shows a bank of detectors, each responsible for detecting a particular sub-goal.   

Prior to the start of the project it was intended that the first prototype would exploit 
an existing real-time HMM-based speech recognition system.  However, there are 
fundamental differences between speech recognition and activity recognition.  For 
example, in the former it can be assumed that the signal corresponds to a well-
ordered sequence of words, but this is not necessarily the case in activity 
recognition, where sub-goals can overlap or co-occur.  In a simple speech 
recognition system, all valid word sequences are compiled into a single integrated 
grammar network.  Recognition is then the process of finding the route through this 
network that achieves the most probable match with the acoustic data.   

The need to accommodate the partially-ordered structure of sub-goals, is the reason 
why the CogWatch AAR is being implemented as a set of parallel, HMM-based sub-
goal detectors (this was described in D3.1).  The input to a sub-goal detector is the 
sub-vector from the Fusion Module corresponding to sensors associated with the 
objects that are relevant to the sub-goal.  For example, the system responsible for 
detecting the “pour milk into mug” sub-goal requires sensor data from the 
instrumented coasters attached to the milk-jug and the mug, plus the Kinect hand-
coordinate data.  The detector includes the relevant sub-goal model (in this case a 
HMM of the “pour milk into mug” sub-goal) and a “background” model to 
accommodate any activity involving the jug and mug which is not the “pouring” sub-
goal (for example ‘toying’ with the jug, the jug at rest).  The sub-goal detector 
continuously compares the input sequence with the “sub-goal” and “background” 
models and the sub-goal is detected when its model has a higher probability than 
the background model. 

4.3 Summary of section 4 

The purpose of this section is to remind the reader of the ‘parallel bank of sub-goal 
detectors’ architecture chosen for activity recognition.  The rationale for the choice of 
this architecture is given in D3.1. 
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5. PRELIMINARY EXPERIMENTS ON SUB-GOAL DETECTION 

This section reports the results of preliminary experiments to assess the 
performance of HMM-based sub-goal detection.  The experiment used data 
collected using a prototype CogWatch instrumented coaster (CIC) attached to the 
base of a jug.  This is an electronic coaster (or drink mat) which contains a 3 axis 
accelerometer, three force sensitive resistors (FSRs), a microcontroller and a 
Bluetooth module. Full details of the CIC are included in CogWatch report D2.1.  
The CIC communicates with a host computer via Bluetooth, where its outputs are 
sampled at 200Hz and stored in a file.  A CIC data file comprises a sequence of six 

dimensional feature vectors (x, y and z accelerometer values and the outputs of the 

three FSRs). 

5.1 Definition of the data set 

Naive subjects were asked to perform four types of activity with the instrumented 
jug: 

 “pour” – subjects were asked to pour liquid from the jug into a mug.  They 
were told that the jug should be at rest on the desk surface at the start and 
end of the activity. 

 “toy” - subjects were asked to move the jug arbitrarily, whilst avoiding the 
“pour” activity.  Again they were told that the jug should be at rest on the desk 
surface at the start and end of the activity. 

 “pour-toy” - subjects were asked to pour liquid from the jug into a mug and 
then to toy with the jug.  They were told that the jug should be at rest on the 
desk surface at the start and end of the activity.  This data was used only for 
testing the detector. 

 “rest” – subjects were asked to leave the jug at rest on the desk top. 

A total of 96 files were recorded.  These were partitioned into a training set of 63 
files and a test set of 33 files.  The numbers of files representing each activity are 
indicated in table 1. 

 “pour” “toy” “pour–toy” “rest” Total 

Test set 7 8 7 11 33 

Training set 20 20 - 23 63 

Total 27 28 7 34 96 

Table 1: The number of files corresponding to each activity in the 
training and test sets. 
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For each data file a label file was created indicating the sequence of actions 
represented by the data.  For example, an instance of the “pour” activity 
would be associated with the following label sequence: 

rest 
pour 
rest 

No timing information was included in the label file. 

5.2  Visualisation of the data 

In our current implementation, the CIC produces a 6 dimensional feature vector  

o = (o1, .. , o6)  

200 times per second.  The coordinates of the feature vector are as follows: 

 o1 (acc 1), o2 (acc 2) and o3 (acc 3) are the acceleration in the x, y and z 

directions, respectively.  The (x,y) plane is parallel with the plane of the 

coaster and the z axis is orthogonal to the plane of the poster, 

 y4 (FSR 1), y5 (FSR 2) and y6 (FSR 3) are the outputs of the three 

FSRs. 

5.2.1 Example of CIC outputs for the different activities 

Figure 3 shows CIC data for an example of the “pour” activity lasting approximately 
9.75s.   

The times at which the jug is raised and put back on the surface are evident from 
the FSR graphs in the figure.  Before the lift, the three FSRs have different values, 
due, presumably, to the characteristics of the individual FSRs and the precise 
orientation of the mug.  However, after the lift all of the FSRs give a value of 
approximately 4100 until the jug is put down again after approximately 1200 
samples.  The FSRs then take between 200 and 800 samples to return, 
approximately, to their original values. 

The accelerometer values are more difficult to interpret and appear to be noisier 
than the FSR values when the jug is at rest.  The third accelerometer reading (acc 
3) corresponds to the vertical axis (assuming that the cup is upright), therefore it is 
measuring gravity as 1g accelerating upwards.  When the mug is tipped most of the 
structure in the accelerometer graphs is the gravity component moving across the 
axes. The gravity component across the three axes always adds up to 1g but it is 
difficult to distinguish between the effects of gravity and more general motion when 
the item is rotated 

Figure 4 shows CIC data for an example of the “toy” activity lasting approximately 
11.05s.  The plots for the FSR values are similar to those for “pour”, although the 
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values for FSR 1 and FSR 2 do not return to their original values after the jug is put 
down on the surface. 

 

Figure 3: CIC outputs for an example of the "pour" activity lasting 
approximately 9.75s. 

. 

 

Figure 4: CIC outputs for an example of the "toy" activity (approximate 
duration 11.05s). 
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Figure 5 shows CIC data for an example of the “rest” activity lasting approximately 
5.45s.  The six outputs are as one would expect, given the discussion of the figures 
for “pour” and “toy”.  Each output is a noisy, stationary signal, with the accelerometer 
values exhibiting a higher level of noise than the FSRs. 

Figure 6 shows CIC data for an example of the “pour-toy” activity lasting 
approximately 18.45s.  The first part of the figure, corresponding to the “pour” 
activities, shows some similarities with Figure 3, though the event between 600 and 
1000 samples, which presumably corresponds to the actual pour, is much clearer in 
Figure 6. 

  

 

Figure 5: CIC outputs for an example of the "rest" activity (approximate 
duration 5.45s). 

5.2.2 HMM structure 

A HMM is specified by: 

 The number of states, N. 

 For each state n, a state output probability density function (PDF) bn such 

that for any feature vector o, bn(o) = p(o | n) is the probability (density) of 

the vector o given state n, (n = 1,..., N).  The type of PDF is restricted to 

those which are compatible with automatic parameter estimation algorithms.  

For the current experiments it will be assumed that each bn is a Gaussian 

Mixture Model (GMM).  In other words, 
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 An N dimensional vector π such that π(n) = P(state n at time t=0).  π is 

called the initial state probability vector 

 An N x N matrix A such that aij = P(state m at time t | state n at time t-1).  

A is called the state transition probability matrix. 

 

 

Figure 6: CIC outputs for an example of the "pour-toy" activity 
(approximate duration 18.45s). 

5.3 HMM system specification 

5.3.1 HMM parameter estimation 

The experiments described here were conducted using the Cambridge University 
Engineering Department’s HMM Toolkit, HTK [1].  This is has become the de facto 
standard for experiments in HMM based automatic speech recognition. 

Basic parameters, such as the number of states, the number of components in the 

GMM state output PDFS (M), and the structure of the initial state probability vector 

and state transition probability matrix, needed to be chosen manually.  Once these 
have been set, the remaining parameters are estimated from data. 



Confidential 

  

 

 

Grant Agreement # 288912       Cogwatch – UOB-EECE/TUM – D3.3.1                        Page 32 of 45 

 

 

5.3.1.1 Initial parameter choices 

A HMM models a signal as if it were piecewise constant, where the constant 
segments correspond to the states.  

The “pour” activity was modelled as a 9 state left-right HMM (Figure 7).  This was 
chosen to try to capture the sequential structure of the “pour” action.  Intuitively, the 
‘segments’ of the “pour” activity are (1) the jug at rest, (2) the jug is raised, (3) the 
jug is moved, (4) the jug is tipped, (5) the jug is moved, (6) the jug is lowered, and 
(7) the jug is at rest.  Two additional states were included to obtain a better 
piecewise constant approximation to the complex tipping movement. 

 

 

Figure 7: "left-right" structure of the "pour" HMM 

As indicated in the figure, only transitions from a state to itself or the next state were 
permitted, to reinforce the sequential structure of the activity.  Initially, each state of 

the “pour” HMM was associated with a single Gaussian state output PDF (M=1). 

The “toy” and “rest” actions were modelled as single state HMMs with multiple- 
component GMM states output PDFs.  It was envisaged that different GMM 
components would capture different positions of the object during toying. 

5.3.1.2 Model optimisation 

5.3.1.2.1 Parameter initialisation 

Initially, all states are associated with single Gaussian state output PDFs.  Each of 

the training files was then segmented uniformly into N segments, where N is the 

number of states in the corresponding model (thus N=9 for “pour” and N=1 for “toy” 

and “rest”).  The (vector) means and variances of each of these segments were 
chosen as the initial mean and variance of the multivariate Gaussian PDFs 
associated with the corresponding state.  This process is implemented using the 
HInit tool in HTK [1]. 

5.3.1.2.2 Parameter optimisation 

These initial HMM parameters were then refined using the HTK implementation of 
embedded training with the Baum-Welch algorithm (HERest).  Ten iterations of 
Baum-Welch training were applied. 

5.3.1.2.3 Increasing the number of GMM components 

Each GMM component PDF was split into two PDFs along its direction of maximum 
variation using the HTK HHed tool, and a further two iterations of Baum-Welch 
training were applied.  This resulted in: 
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 Two 9 state “pour” models, one with Gaussian state output PDFs, and one 
with two-component GMM state output PDFs 

 Seven single state “toy” models and seven single state “rest” models, with 1, 
2, 4, 8, 16, 32 and 64 component GMM state output PDFs. 

5.3.2 Activity detection 

5.3.2.1 The recognition grammar 

The ‘recognition grammar’ is represented in Figure 8.  Intuitively, this grammar sets 
up a competition between the “pour”, “toy” and “rest” models in terms of which one 
of them can provide the best explanation of the data up to any point.  During 
recognition, each of the solid square boxes is replaced by the corresponding HMM.  

Given a sequence of test vectors o corresponding to a particular movement of the 

jug, the recognition algorithm, known as the Viterbi decoder [1] finds the sequence 

of states s such that the joint probability of o and s is maximised.  From this state 

sequence the optimal explanation of the data as a sequence of “pour”, “toy” and 
“rest” activities can be recovered. 

 

 

 

 

 

 

 

Figure 8: Recognition network for “pour” detection 

5.4 Experimental results 

5.4.1 Activity recognition using the ‘raw’ CIC data 

Figure 9 shows activity recognition results, for the “pour”, “toy” and “rest” activities, 
using the raw CIC output.  The graphs show “% Correct” and “% Accuracy” on the 
training and test data.  These are standard performance measure in automatic 
speech recognition, defined by: 

,100%Acc  ,100%Corr. 






N

IDSN

N

DSN
 

where N is the number of test tokens, S is the number of substitution errors, D is the 

number of deletion errors, and I is the number of insertion errors.  These are 

calculated using dynamic programming to compute an optimal alignment between 

pour 

rest 

toy 
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the output of the recognizer and the correct transcription of the data.  They can be 
calculated using the HTK tool HResults [1].  Clearly the % correct figure is always 
greater than or equal to % accuracy. 

Figure 9 shows typical results for this type of experiment.  On the training data 
performance improves as the complexity of the model is increased by increasing the 
number of GMM components.  By contrast, on the test data, performance peaks for 
GMMs with 32 components.  In the case of the system with 64 component GMMs 
the model is capturing detail in the training data that does not generalize to the test 
data, so that performance on the test data is compromised.  This is a limitation of 
the training set size. 

 

Figure 9: Activity recognition results using the raw CIC data. 

The best test set performance is 48% accuracy.  A closer inspection of the results 
shows that “rest” is consistently misrecognised as “toy”.  This is due to the variations 
in the FSR values between different placements of the jug on the surface.  There 
are also frequent confusions between “pour” and “toy”. 

The HTK parameters ‘word-insertion penalty’ and ‘minimum variance’ were set 
empirically to -350 and 0.1, respectively. 
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5.4.2 Pre-processing of the FSR data 

The most significant problem with the CIC data is the inconsistency between FSR 
values for different instances of the object at rest.  By contrast, it has already been 
seen that the FSR values are consistent when the object has been lifted off the 
surface (in this case all three FSRs give values close to 4096).  Despite their 
inconsistency, the FSR values for an object at rest are all significantly less than 
4000.  Therefore a simple solution is to threshold the FSR values.  Define: 

 


 


      otherwise 0

4000 if 1 FSR
FSRD . 

Figure 10 shows activity recognition performance for pre-processed CIV data 
comprising the raw accelerometer data and thresholded FSR data.  Focusing on % 
accuracy on the test set, the best result, 64%, is again obtained with a system 
based on 32 component GMMs. The improvement relative to the system using the 
raw CIC data is due mainly to correct recognition of “rest”.  The remaining 
confusions are between “toy” and “pour”. 

 

Figure 10: Activity recognition results using the raw accelerometer data 
and thresholded FSR data. 
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5.4.3 An alternative model optimization scheme 

Section 5.3.1.2.3 describes an incremental approach to increasing the number of 

GMM components in the “toy” and “rest” model, where the GMM with 2
M

 

components is obtained by splitting the components of the GMM with 2
M-1

 

components and then applying Baum-Welch parameter training.  An alternative is to 

create a GMM with 2
M

 components directly from repeated splitting of the 

corresponding 2 component GMM, and then to apply Baum-Welch parameter 

estimation.  This will be referred to as “one step” GMM expansion.   Intuitively one 
might expect this approach to lead to problems with local optima.  However, for the 
current task, the second approach gives better results. 

 

Figure 11: Activity recognition results using the raw accelerometer data 
and thresholded FSR data with M component GMMs derived directly 
from 2 component GMMs 

 

Figure 11 shows performance on the training and test sets as a function of the 
number of GMM components in the “toy” and “rest” models, for one-step GMM 
expansion.  The test set recognition accuracies of around 70% for 4 and 8 
component GMMs are the best results that have been achieved to date. 
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5.4.4 “Delta” FSR parameters 

The simple thresholding method described above is a simple and effective solution 
to the problem of variability in the FSR outputs when the jug is resting on a surface.  
However it has limited utility. 

The results of CIC calibration presented in D.2.3.1 show that the FSRs in the CIC 
can detect changes in weight of as little as 5 grams.  This is less than the weight of 
a typical portion of milk that is added to tea.  This suggests that more robust “pour” 
detection could be achieved by considering not just the outputs of the CIC attached 
to the jug, but also the outputs of the CIC attached to the ‘receiving’ mug.  However, 
without the thresholding method described in 5.4.2 the effects of these weight 
changes will be masked by the variability in the FSR outputs for an object at rest, 
but applying thresholding will remove any differences in the FSR outputs due to 
such a weight change. 

A potential solution is to use the time derivatives of the FSR outputs as additional 
features.  In principle these derivatives should be equal to zero when an 
instrumented object is at rest, but should register the weight change when, for 
example, milk is added to a jug. 

In automatic speech recognition, the time derivatives of features are estimated using 
“delta” parameters.  For a time varying feature yt the corresponding delta feature Δyt 
is defined by: 
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where the derivative is estimated over the interval yt-W,…, yt+W and W is referred to 

as the analysis window size.  Increasing the value of W will compensate for noise in 

the FSR parameters and lead to smoother delta FSR parameters.  It is evident from, 
for example, Figure 11, that the FSR outputs are noisy. 

Figure 12 shows activity recognition results for features comprising the three raw 
accelerometer outputs, the three thresholded FSR outputs, and three FSR 

derivatives (computed from the raw FSR data), for values of W between 2 and 30.  

The figure shows the results obtained using “toy” and “rest” models with 8, 16, 32 
and 64 GMM components, plus the average result.  The figure indicates that 

increasing W from 2 to 8 results in decreases in recognition accuracy, but that 

increasing W beyond 8 leads to performance improvements, leveling out for values 

of W over 20.  The value W=20 corresponds to estimating derivatives over a 0.2s 

window.   

Figure 13 shows the sequence of augmented CIC vectors for an example of the 
“pour” activity.  The augmented feature set comprises the 3 raw accelerometer 
outputs, 3 thresholded FSR outputs (these have been scaled and offset so that they 
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are visible in the figure), and the three delta-FSR parameters.  The latter were 

computed with W=20.  The delta-FSR parameters are approximately zero when the 

jug is either on the surface or raised above the surface, but non-zero values are 
clearly visible when the jug is lifter or placed back on the surface. 

The highest accuracy achieved using the FSR derivative is 69.33%, which is slightly 
poorer than the best performance achieved without these parameters.  However, in 
the current test set there are no cases where one would expect delta FSR 
parameters to give an advantage over the simple thresholded FSR parameters.  
Further experiments, in which, for example, the jug CIC data is augmented with CIC 
data from the mug receiving milk during a “pour” activity, are needed to properly 
judge the utility of the delta FSR parameters. 

 

Figure 12: Activity recognition results using the raw accelerometer data,  
thresholded FSR data and derivatives calculated from the original FSR 
data over different analysis windows. M component GMMs derived 
directly from 2 component GMMs. 

5.4.5 Further pre-processing of the CIC parameters 

There are a number of opportunities for pre-processing the CIC parameters which 
we expect to result in improvements in performance. 
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5.4.5.1 Filtering of the FSR data 

Figure 12 shows the effect on recognition performance of the size W of the analysis 
window over which delta-FSR parameters are computed.  Increasing W is equivalent 
to smoothing the FSR parameters during delta-FSR calculation.  An alternative 
approach would be to low-pass filter the FSR signals and then calculate delta-FSR 
parameters with a smaller analysis window.  We are currently conducting 
experiments to identify suitable filters. 

Filtering of the accelerometer outputs should also be advantageous. 

 

Figure 13: Raw accelerometer data, thresholded FSR data (scaled for 
visualisation) and FSR derivative data for an example of the “pour” 
activity.  Derivatives calculated over 20 samples. 

5.4.5.2 Integration of the accelerometer values 

In order to know whether zero-valued accelerometer data corresponds to the CIC 
moving at non-zero constant velocity or being stationary, it is necessary to know 
about past accelerometer output values.  This ‘history’ is not available during HMM 
processing because of the Markov property (this is particularly significant in the case 
of the single stage “toy” and “rest” models).  Therefore, intuitively it would be appear 
to be advantageous to integrate the accelerometer data to recover velocity.   
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Synchronized data will be collected from a CIC and from a marker-based 3D motion 
tracking system for an instrumented mug in motion.  Experiments will then be 
conducted to measure the extent to which the mug’s trajectory can be reconstructed 
from the CIC accelerometer parameter.  These are similar to previous experiments 
in which accelerometer data was used to augment a marker-based 3D human body 
motion tracking system in order to maintain trajectories during occlusions [2]. 

The effect of velocity and position parameters recovered from the accelerometer 
data, on recognition accuracy will be tested. 

5.4.5.3 Further pre-processing of the accelerometer data 

A further source of variability in the data output by the accelerometers in the CIC is 
the direction of travel.  If the initial positions of the objects involved in tea-making are 
known, and can be maintained throughout a tea-making session (for example, by 
tracking using the accelerometer data, as described in 5.4.5.2) then the direction of 
travel of an object is useful information and needs to be incorporated explicitly in the 
recognition process.  However, if these locations are not known then the direction of 
travel of an object is effectively noise.  In this case it might be beneficial to combine 
the different velocity parameters recovered from the accelerometer data.  For 
example, the x and y velocity parameters could be combined to give the speed of 
horizontal motion. 

5.5 Summary of Section 5 

This section has presented the results of preliminary experiments in automatic 
activity recognition using the outputs of a single CIC attached to a jug.  So far, the 
best performance achieved is a recognition accuracy of approximately 70%. 

Additional types of pre-processing of the CIC parameters have been discussed 
which may lead to improved performance.  

Further experiments are needed, for example to measure the benefits of attaching 
several CICs to different objects which interact in an activity (for example, the milk 
jug and the ‘receiving’ mug). 
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6. IMPLEMENTATION OF THE AAR 

6.1 Features of the CogWatch AAR 

The AAR is being implemented in C#.  It has the following features: 

 It uses the standard format for HMMs from Cambridge University Engineering 
Department’s HMM Toolkit (HTK) [1].  This means that models developed 
and evaluated offline using HTK can be immediately ported to the CogWatch 
AAR. 

 It uses standard HTK format recognition networks (these are normally 
referred to as “wordnets” in HTK [1]).  A separate network is applied to each 
sub-goal detector.  Typically this network sets up a ‘competition’ between the 
relevant sub-goal model, a model of ‘toying’ with the objects involved in the 
sub-goal, and a ‘rest’ model corresponding to the objects at rest. 

 Recognition is performed using a standard, continuous time-synchronous 
Viterbi decoding algorithm.  A minor difference from standard speech 
recognition is that rather than searching a single integrated network, the 
CogWatch decoder searches a set of separate sub-goal networks in parallel. 

 Beam search is applied to reduce computational load.  In Viterbi decoding, at 

each time t the system computes a vector of probabilities, where the indices 

of the vector components correspond to the states of the model, and the 

value in component i corresponds to the joint probability of the data up to 

time t and the ‘optimal’ partial state sequence ending in state i at time t.  The 

beam search algorithm ‘prunes out’ paths whose probabilities are less than 

the maximum probability at time t by more than a given margin, referred to as 

the ‘beam width’.  Consequently, at time t+1, states that only connect to 

‘pruned out’ states at time t need not be considered. 

 In order to be able to recover the best explanation of the data, the Viterbi 
decoder must maintain the histories of the best state sequences up to 
particular states.  Because the recogniser runs continuously, with no ‘end’, a 
technique called ‘Partial Traceback’ is used to free the memory used to store 
these histories.  At regular intervals the separate histories are traced-back 
through time to see if they converge at some point in the past (for example, 
all of the alternative explanations may agree that all objects were at rest at a 
particular point in the past).  Once such a point of convergence has been 
found, the best explanation of the data up to that point can be output and the 
memory used to store alternative histories up to that point can be freed.  If no 
point of convergence is found, the best guess of the optimal explanation of 
the data is output before memory is exhausted. 
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7. CONCLUSIONS 

7.1 Action prediction 

This report has described the approach to automatic activity recognition (AAR) and 
task modelling (TM) in the first CogWatch prototype.  When combined, these two 
processes are referred to as Action Prediction. 

7.2 The Task Model (TM) 

A TM based on a Markov Decision Process (MDP) has been implemented, and this 
was described in Section 2.2.  This model has been tested and verified using 
synthetic participant data.  However, a shortcoming of the MDP-based approach is 
that it is not well-suited to dealing with ambiguity.  In the CogWatch system, 
ambiguity arises because the AAR is imperfect and makes classification errors. 

A potential solution to this problem is described, in which the MDP is replaced by a 
Partially Observable MDP.  The basic theory of the type of POMDP that we propose 
to use is presented in Section 2.3. 

7.3 Failure prediction 

Approaches to online failure prediction that use the information that is available in a 
MDP or POMDP-based TM were described in Section 3.  The proposed method is 
based on cost functions that measure (i) the time taken by the participant to 
complete a task, (ii) the number of times that the participant’s actions deviate from 
the optimal strategy, (iv) the number of times that the participant’s actions deviate 
from a prescribed plan (if one has been defined) and (v) the number of times that 
the participant breaks one of a set of ‘hidden’ rules.  As representative data 
becomes available it is hoped that it will be possible to use these measures as the 
basis of robust and psychologically plausible approaches to failure prediction. 

7.4 Recognition algorithms 

The rationale for choosing parallel, HMM-based sub-goal detectors for activity 
recognition in CogWatch prototype 1, which was first presented in deliverable D3.1, 
is reviewed for completeness in Section 4. 

7.5 Recognition algorithm performance 

Section 5 present results of a preliminary evaluation of HMM-based sub-goal 
detection.  Specifically the problem of detecting the “pour milk into jug” sub-goal, 
using only the outputs from the accelerometers and force sensitive resistors in a CIC 
attached to the base of the jug, is investigated.  The data used to train and evaluate 
the system was collected from non-patient subjects using the jug.  The system uses 
a multiple state “left-right” HMM to capture the sequential structure of the “pour” 
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activity, and single state multiple component GMM HMMs for the “toy” and “rest” 
activities. 

The experiments investigate the effect of changing the number of states in the “pour” 
model and the number of GMM components in the “toy” and “rest” models.  Pre-
processing of the CIC sensor data is also investigated.  In particular simple 
thresholding is applied to the outputs of the FSRs, to overcome variability in the FSR 
data when the object is at rest on the work surface.  The effects of low-pass filtering 
and differentiation of the FSR outputs are also investigated.  A number of additional 
types of pre-processing are suggested. 

So far, recognition accuracy achieved in the experiments is approximately 70%.  
However, this accuracy is expected to increase as the modelling improves.  

7.6 Implementation of the AAR 

Finally, the implementation of a real-time AAR is discussed. 
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