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EXECUTIVE SUMMARY 

The main objective of the work package WP3 “Activity Recognition & Prediction” is to 
explore psychological and pattern-based models to construct action recognition techniques, 
apply these techniques to the data collected from the patient studies to develop an action 
recognition system, review psychological models and apply advanced statistical methods to 
provide a reliable action prediction model that will be able to identify patients’ intentions, 
predict actions and assess the progress of a task. The activities in this work package are 
divided into three main tasks (1) description and selection of action recognition techniques, 
(2) data collection methods, (3) action prediction models 

Many of these objectives and tasks have been addressed in the previous deliverables D3.1, 
D3.2.1 and D3.3.1. Current developments in action prediction models are addressed in the 
deliverable D3.3.2 which is compiled simultaneously. The present deliverable addresses the 
further development of action recognition techniques and the empirical analysis of related 
data.  

Action recognition basing on hidden Markov models (HMMs) has been further developed. A 
feature vector containing all relevant signals from the coasters and the Kinect presents the 
input into the models. It was decided to realize the action recognition (AR) at the 
hierarchical level of sub-goals. Consequently ten different sub-goals have to be recognized 
for the tea making task. A novel, parallel Viterbi decoder with a partial trace-back algorithm 
was implemented to enable real-time behavior. 

AR was tested empirically using data of 26 healthy subjects who have completed the sub-
goals or the complete trial of the tea making task several times. Evaluating the separated 
sub-goals, those sub-goals were detected with a particularly high accuracy (> 95%), for 
which the coaster data, signaling object movement, provided all relevant task information. 
The accuracy decreased for sub-goals in which coaster data were only partial informative. 
Error rates were highest (approximately 20%) for sub-goals which only involved hand 
trajectory data. Continuing development will further decrease latencies and improve 
detection also within complete sequences.  

The kinematics of both hands during the execution of the tea making task was analyzed in 7 
stroke patients and in 9 healthy control subjects. The comparison of unimanual with 
bimanual task performance yielded interesting clinical findings in patients, for example: 
Does the right hand in patients with left brain damage lead performance during bimanual 
execution despite the presence of paresis? Concerning AR, characteristic profiles were 
found for the individual segments emphasizing a possible use of kinematics for online 
analysis. Patients deviated in durations and velocities but not in spatial variables from 
controls. In addition, deficits were similar across the different segments. This indicates that 
a generalization of findings and rules in healthy subject on patients’ behavior is possible 
with some restrictions.  

For the second CogWatch task “tooth brushing” a number of sensors measuring position or 
acceleration can be considered for indicating the position of the brush in the mouth. A 
particularly elegant method may be the analysis of the sound of the brush measured with a 
microphone outside the mouth. This idea was investigated using Gaussian Mixture Models 
basing on the frequency information. With multiple data from one individual it was shown 
that various relevant dimensions like front – back, top – bottom, left – right, and inside – 
outside could be distinguished with high precision above 85% up to nearly 100%. The 
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precision under less ideal conditions still has to be evaluated. The technique may also be 
combined with alternate approaches to reach high detection accuracies. 
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1. INTRODUCTION 

1.1 Activity recognition 

The main objective of the work package WP3 “Activity Recognition & Prediction” is to 
explore psychological and pattern-based models to construct action recognition techniques, 
apply these techniques to the data collected from the patient studies to develop an action 
recognition system, review psychological models and apply advance statistical methods to 
provide a reliable action prediction model that will be able to identify patients’ intentions, 
predict actions and assess the progress of a task. The activities in this work package are 
divided into three main tasks (1) description and selection of action recognition techniques, 
(2) data collection methods, (3) action prediction models 

Many of these objectives and tasks have been addressed in the previous deliverables D3.1, 
D3.2.1 and D3.3.1. The deliverable D3.3.2, which is produced in parallel with the present 
deliverable, addresses action prediction in continuation of D3.3.1. The present work 
addresses action recognition and in particular the analysis of data assessed within this 
context.  

Activity Recognition (AR) in the CogWatch project refers to technology for monitoring of a 
participant engaged in an activity for everyday living (ADL). The CogWatch AR system 
should recognize the action that the participant is performing. Together with the CogWatch 
action prediction system it should know the state of the action. It should be able to estimate 
the likelihood of successful completion, and it should be able to synthesize useful cues and 
feedback to the participant to redirect action. The CogWatch AR system monitors an activity 
using sensors attached to tools and objects, plus video-based estimates of the participant’s 
hand positions. 

The deliverable addresses the three main tasks of related empirical work namely “Video-
based action recognition (T3.2.1)”, “Marker-based action recognition (T3.2.2)”, and “Object-
based action recognition (T3.2.3)”.  

Video and depth sensor information of the Kinect is used to calculate the positions of the 
hand that provides an important source of information for action recognition. Approaches 
based on the computer vision were dropped due to accuracy limitations (see Progress 
Report 2). 

Object-based action recognition turned out as a reliable and suitable methodology which is 
now extensively used in the Cogwatch prototypes.  

Markers-based action recognition refers to motion recording of body segments, mainly the 
hand, and the corresponding kinematical analyses.  

 

1.2 Objectives since month 11 

Three sets of objectives are described in the rest of this report. Section 2 describes the 
further development of an action recognition (AR) approach based on Hidden Markov 
Models for the “Tea making” CogWatch prototype (Section 2). The feature vector containing 
all information for the instrumented coasters as well as hand trajectory information from 
Kinect has been defined. Within the hierarchical actions levels, the sub-goal level has been 
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suggested to be most promising for AR, but AR on lower levels is possible as well. The 
need for real time encoding as well as the fact that the sequence of sub-goals is not fixed 
and, in the case of bimanual operation, sub-goals my additionally occur in overlapping time 
during daily activities like tea making has put particular demands on the development. 
Specific algorithms and procedures were developed for that purpose and implemented. 
Empirical tests of the implemented AR were conducted using data of healthy subjects.  

An evaluation of marker based motion recording is presented in Section 3. AR based on 
segmentation of the multi-step action and kinematic analyses were tested in healthy 
subjects and a group of AADS patients. The investigation served the purpose to determine 
the degree the results obtained in healthy subject about the quality of AR can be 
generalized to AADS patients. In addition, the potential support of AR by kinematic 
measures was evaluated. The feasibility of this approach that is currently off-line but may be 
on-line in future version of the CogWatch system is discussed. 

Section 4 describes the evaluation of an approach to AR for the second CogWatch task 
“Tooth brushing”. Specifically, the acoustic sound of the tooth-brush in the mouth was 
measured and algorithms were developed to infer the position of the brush in the mouth. 
Promising results were obtained from this approach. 
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2. REAL-TIME ACTION RECOGNITION IN TEA-MAKING 

2.1 The tea-making task 

The tea-making task and the rationale for choosing it as the task for the first CogWatch 
prototype system are described fully in CogWatch deliverable D1.1 “Report on scenarios”. 
Figure 1 (taken from D1.1) shows a hierarchical tree based description of the task. It is 
included here for ease of reference. 

 

 
Figure 1: Hierarchical tree representation of the tea making task (from D1.1 Report on 
scenarios) 

2.1.1 Terminology 
The following terminology from D1.1 is used to describe items in this hierarchical tree: 
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 The goal corresponds to the root of the tree and is “prepare a cup of tea”. The whole 
description is aimed at achieving the goal (which, therefore, can be defined in terms of 
completion) 

 The items at the next level of the tree, namely “heat water”, “add water to cup”, “put tea 
bag in the cup”, “remove the tea bag from the cup” and “take a sip of tea”, will be 
referred to as sub-goals. 

 The items at the third level of the tree, for example “fill the kettle”, “switch on the kettle” 
and “wait for boiling”, will be referred to as tasks. 

 The leaves of the tree, for example “grasp handle”, “push forward until water pouring”, 
“keep still until cup is full” and “tilt back the kettle”, will be referred to as sub-tasks. 

2.1.2 Implications for activity recognition 
The choice of tea-making as the scenario for the first CogWatch prototype system has a 
number of implications. First, the description of tea-making as a hierarchical tree facilitates 
the use of methods from other fields, such as automatic speech recognition (ASR). 
However, the sequential structure of the tea making activity, and in particular whether its 
components can be thought of as a well-ordered or partially-ordered set, has implications 
for the choice of architecture for the action recognition system. These issues are discussed 
in more detail below, in the description of the approach to action recognition that was taken. 

 

2.2 The first prototype CogWatch Action Recognition system 

2.2.1 Outline of the system 
Figure 2 is a diagram of the CogWatch Action Recognition (AR) system for the tea-making 
task. AR is performed by analyzing the outputs of sensors attached to the principal objects 
involved in the task, namely the mug, milk-jug and kettle. These sensors indicate whether 
an object is moving or stationary, whether it has been tilted, whether it is resting on the 
work-surface or held above the surface, and the object’s weight when resting on a surface. 
The user interacts with the instrumented objects and the signals from these plus hand 
coordinates, obtained from a Microsoft Kinect system, are passed to the real-time AR 
system. When the user completes a sub-goal, it is recognized and its identity is passed to 
the Task Model. 

The function of the Task Model is to track the user’s progress through the task, and to 
detect an error if it occurs. The Task Model in the first CogWatch prototype is based on a 
Markov Decision Process (MDP). Every sequence of sub-goals that can be continued to a 
satisfactory completion of the task is a state of the Task Model. Associated with each state 
is an optimal strategy, which is the best sub-goal for the user to execute next. The optimal 
strategy is pre-computed before the system is exposed to a user. 

If an error has been detected the Task Model passes an error code to the Error table / 
cueing module, which determines whether or not a cue is to be passed to the user, and if so 
the type of cue. Even if an error has not occurred the Task Model knows the best next 
action for the user (the „optimal strategy“). This can be passed to the Error-table / cueing 
module which may or may not pass it to the user (recall that CogWatch is a rehabilitation 
rather than an assistive system). The Task Model is described in detail in deliverable D3.3.2. 
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Figure 2: Outline of the CogWatch Action Recognition system 

2.2.2 Instrumentation 
The approach to AR used in the CogWatch prototype relies primarily on interpreting the 
outputs of sensors attached to the objects involved in the task. This differentiates it from 
other approaches that rely, for example, on advanced image processing. In the tea-making 
task the sensors are encased in a ‘coaster’ which fits underneath a mug or jug. This is the 
CogWatch Instrumented Coaster (CIC) which is described fully in D2.2.2. 
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Figure 3: Gaussian neighborhoods to detect the proximity of the user’s hand to an object in 
the tea-making task. 

Briefly, the CIC contains a three-axis accelerometer (to measure the object’s movement), 
three force-sensitive resistors (FSRs) (to detect whether the object is resting on a surface 
and to estimate weight), a battery and a Bluetooth module. The CIC sensor outputs are 
updated 50 times per second. 

In addition to the CICs, the AR uses hand position coordinates, measured using the 
Microsoft Kinect system, to characterize the user’s interaction with objects that are not fitted 
with a CIC (namely the tea-bag, sugar and user-tea-bag containers and the water jug). The 
hand coordinates are used only to detect proximity of the user’s hand to an object, and the 
details of the hand’s trajectory during the task are ignored. The method is based on the 
notion of “Gaussian neighborhoods”. For each object the distribution of hand coordinates 
when the user interacts with that object is learnt and modelled as a Gaussian probability 
density function (PDF). For each object the Gaussian neighborhood gives rise to a feature, 
whose value is zero when the user’s hand is not interacting with the object and increases as 
it approaches the object. The Gaussian neighborhoods in the tea-making task are shown in 
Figure 3. 

For example, in Figure , as the user’s hand approaches the sugar container the value of the 
feature gs increases from 0 to 1. 

 

2.2.3 Sensor data capture and pre-processing 
Figure  shows the capture and synchronization of sensor data that is the first stage in the 
AR process. 

The left hand side of the figure represents the sensors involved, namely the CICs attached 
to the objects involved in the task, and Kinect. The outputs of these sensors are transmitted 
via a wireless Bluetooth channel, captured in real-time, synchronized and compiled into a 
feature vector similar to that shown in the figure. The feature vector is updated and passed 
to the real-time AR module 50 times per second. 
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Figure 4: Feature synchronization in the CogWatch Action Recognition system 

The values in the feature vector include raw processed versions of the sensor outputs. For 
example, whether the object is resting on a surface or suspended above the surface can be 
detected by applying a simple threshold to the average value of the FSRs, whereas more 
subtle weight changes (for example, resulting from pouring water or milk into a mug, or from 
removing a used tea-bag) are indicated by the derivative of the average FSR value. 

2.2.4 Structure of the AR system 
The architecture of the AR system is shown in Figure 5. The AR consists of a parallel set of 
detectors, with dedicated detectors for each of the sub-goals of the tea-making task and for 
important actions that the user might perform that are not sub-goals, such as “toying” with a 
kettle of boiling water. 

The sub-goal detectors continuously monitor the input feature vectors in parallel in real time. 
When a detector judges that its sub-goal has occurred the AR outputs a label for that sub-
goal, which is passed to the Task Model. The parallel architecture was chosen to cope with 
a situation where the user executes two sub-goals at the same time, or in overlapping time. 
A more conventional decoder that assumes that events occur in a well-ordered sequence 
would be unable to accommodate this type of behavior.  

Each sub-goal detector uses only the relevant features from the feature vector. For example, 
the detector for the sub-goal “add milk to mug” uses the features from the CICs attached to 
the milk jug and the mug, plus the corresponding Gaussian neighborhood values. 
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Figure 5: Architecture of the CogWatch Action Recognition system 

2.2.5 Structure of a sub-goal detector 
Figure 6 represents an individual sub-goal detector for the sub-goal “pour milk” (from the 
milk jug into the mug). A “feature map” for this detector indicates which of the features in the 
feature vector are relevant to this sub-goal. The detector is based on two hidden Markov 
models (HMMs), namely a sub-goal model and a toying model. HMMs can be thought of as 
generic statistical models for sequential data. They are most commonly used in automatic 
speech recognition but are equally suited to statistical modelling of other types of sequential 
data. The rationale for using HMMs for sub-goal recognition in the CogWatch AR system 
was explained in a previous report (D3.1.1). 

The sub-goal HMM is a statistical model of the variations of sequences of sensor outputs 
that occur when a user executes that sub-goal. It consists of a sequence of states, which 
can be thought of as models of the sequence of tasks and sub-tasks that make up the sub-
goal. Each of these states is associated with a Gaussian Mixture Model (GMM) that 
characterizes the distribution of sensor outputs for that task or sub-task. The “toying” model 
is a single GMM, with a large number of components, that models the values of the sensor 
outputs that occur when the user is not executing the sub-goal. These two models are run in 
continuous competition. An output occurs when a sequence of sensor outputs is detected 
for which the probability given the sub-goal model is greater than the probability given the 
toying model. 
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Figure 6: Structure of an individual sub-goal detector 

2.2.6 Recognition strategy for the sub-goals of tea-making 
The complete sensor set in the CogWatch AR for the prototype tea-making system 
comprises: 

 Two ‘standard’ CogWatch Instrumented Coasters (CICs). One is attached to the 
base of the milk jug and one to the base of the mug. 

 One ‘customized’ CIC for the kettle. Because the kettle is a ‘base’ kettle (i.e. it has a 
separate base onto which it is normally placed and which is the source of electrical 
power for boiling, but which it is lifted off for pouring), the standard CIC is not 
applicable. Hence a customized two-component version of the CIC was developed 
for the kettle. The three FSRs, which are normally fixed to the base of the CIC, were 
fixed to the bottom of the kettle base. A separate battery and Bluetooth module are 
provided for these sensors. The accelerometer, with its own battery and Bluetooth 
module, is packaged in a small box that is attached to the kettle handle. 

 A standard Microsoft Kinect for Windows. 

The number of CICs was restricted by the number of devices that needed to be 
manufactured to provide an identical sensor set for each of the CogWatch partner sites, and 
the number of devices that can be connected via Bluetooth. This necessitated some 
compromises in the instrumentation of the task: 

 Although the mug, milk-jug and kettle were fitted with CICs, the water jug was not. 
Therefore components of sub-goals that involve manipulation of the water jug can 
only be recognized indirectly from Kinect hand-position coordinates or from changes 
in the weights of other objects (primarily the kettle) that result from actions involving 
the water jug. 
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 The tea-bag, used tea-bag and sugar containers were not fitted with CICs, and there 
are no sensors of any type attached to the individual tea-bags or sugar cubes. This 
means that, like actions involving the water jug, sub-goals or components of sub-
goals that involve manipulation of tea-bags or sugar can only be recognized 
indirectly from Kinect hand-position coordinates or from changes in the weights of 
other objects (primarily the mug) that result from actions involving these items. 

2.2.7 Real-time recognition 
The standard algorithm for HMM-based pattern recognition is the Viterbi decoder. Given a 
sequence of feature vectors o1, o2,…,oT and a set of HMMs the Viterbi algorithm finds the 
sequence of models m1,…,mN such that (an approximation to) the probability 

p(o1,…,oT | m1,…,mN) 

is maximized. This involves an iterative computation where the probability that the partial 
sequence o1,…,ot is generated and the system is in state i at time t is calculated from 
corresponding probabilities at time t-1 for all possible preceding states j. In the standard 
implementation of the Viterbi algorithm this continues until the end of the file is reached (t = 
T) and the optimal explanation of the data can be recovered. For example, this is the basis 
of the Viterbi decoder “HVite” in the standard HTK toolkit. 

However, in a real-time implementation of the Viterbi decoder, data arrives continuously and 
there is no concept of the ‘end of the sequence’. Without this the algorithm cannot output its 
decision and eventually the computer’s memory will be exhausted. 

2.2.8 Partial Trace-back 
A solution to this problem is to use an algorithm called Partial Trace-back. This is illustrated 
in Figure 7. The partial trace-back algorithm was developed in the context of automatic 
speech recognition, and the terminology used reflects this. Partial trace-back uses a time-
indexed array of word-link records. At any time s in the past, the word-link record at time s 
contains the identity of the best model that ends at that time, the time in the past when that 
model was entered, and the corresponding score. 

During the Viterbi algorithm, in addition to updating the best score/probability for each state i 
and time t, a record is also kept of the time at which the model was entered to achieve that 
score. These are the straight arrows on the right-hand side of Figure 7 and they can be 
thought of as pointers back into the word-link record. 

At regular intervals, these pointers are traced-back through the word-link records to try to 
find a point in the past, more recent than the start of the buffer, where all of these paths 
converge (the ‘convergence point’ in Figure 7). Once such a convergence point exists it will 
always exist, because nothing that happens in the future can change it.Therefore the 
sequence of words (sub-goals) in portion of the word-link records between the start of the 
buffer and the convergence point can be output and the corresponding memory can be 
freed.  

2.2.9 Latency 
One problem with partial trace-back is that it introduces a time delay, or latency, which is the 
difference between the time of convergence in the past and the current time. It is important 
to realize that this latency is not due to a shortage of computing power. Instead it results 
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from an inability to find a convergence point in the recent past. This is normally because 
there are multiple, competing explanations of the data which do not converge. 

For example, if the final state of the sub-goal model corresponds to a point after completion 
of the sub-goal where there is no further activity relating to that sub-goal, and if the “toying” 
model includes a component that corresponds to no activity related to the sub-goal (which it 
almost certainly will), then after completion of the sub-goal there is potential conflict 
between paths that remain in the final state of the sub-goal model and paths that remain in 
that state of the toying model. This type of behavior has been observed and can be fixed by 
removing the option of remaining in the final state of the sub-goal model by setting its self-
transition probability to zero. 

Specifically, consider the case of the sub-goal “add milk”. The sub-goal HMM is a multi-state 
model whose states should correspond to the sequence of sensor outputs that typically 
occur when the sub-goal is executed. During model training, examples of these sensor 
outputs are automatically aligned with the model. However, a typical training data file for 
“add milk” will also include “toying” (sensor outputs that follow the sub-goal but are not part 
of the sub-goal) at the end of the file. If there are errors in the alignment then it is likely that 
the one or more states at the end of the sub-goal HMM will correspond to “toying” rather 
than part of the sub-goal. During Action Recognition the sub-goal model competes with the 
toying (or background) model to explain the sequence of outputs from the sensors. In the 
situation envisaged above, at the end of an instance of “add milk” the final state of the sub-
goal HMM and the “toying” model will provide equally valid interpretations of the data. 
However, the partial trace-back record for the final state of the sub-goal model will point 
back to the start of the sub-goal, while the corresponding record for the toying model will 
point to the end of the sub-goal. Until this ambiguity is resolved (for example, by the patient 
doing an action which causes sensor outputs that were never seen in the training data after 
“add milk”) the partial trace-back algorithm will be unable to output the sub-goal and there 
will be a delay. The solution is either to ensure that the end of the sub-goal is accurately 
labelled in all of the training files (so that the alignment error referred to above never 
happens) or to edit the sub-goal HMM to remove any states that correspond to toying, or at 
least to prevent the Viterbi decoder from remaining in these states (as described above). 

2.2.10 Implementation of the real-time AR 
The real-time CogWatch AR consists of a set of parallel sub-goal detectors, where each 
detector consists of an implementation of the Viterbi decoder with partial trace-back running 
on a set of HMMs (comprising at least a sub-goal HMM and a “toying” HMM). The system is 
implemented in C#. 

The object-oriented nature of C# lends itself well to this application. A detector corresponds 
to a class called “hmmset”, for which there are methods corresponding to the Viterbi 
decoder and the partial trace-back algorithm, and the whole AR is just a set of detectors. 
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Figure 7: Explanation of the Partial Traceback algorithm to enable real-time Viterbi 
decoding. 

2.2.11 Validation 
The CogWatch AR uses exactly the same file formats to store HMMs as the standard HTK 
system. This has two major advantages. First, the parameters of the sub-goal and toying 
models can be learnt automatically from data using the standard HTK model parameter 
estimation tools. The models can then be ported to the CogWatch AR. Second, the results 
of the detailed calculations performed inside the CogWatch AR can be compared with those 
performed inside the HTK tool HVite. In this way the correct operation of the CogWatch AR 
has been validated.  

 

2.3 Off-line experimental evaluation 

This section reports the results of an off-line experimental evaluation of the performance of 
the individual sub-goal detectors in the current version of the CogWatch AR. 

2.3.1 Data used in the evaluation 
Twenty-six participants, aged between 18 and 80, completed multiple individual sub-goals 
and multiple full tea-making trials. In all cases synchronized sensor outputs were recorded. 
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The recordings are summarized in Table 1: Details of recordings of data used in the 
experiments reported in this section. In total there are 1124 recordings of isolated actions 
(4.01 hours) and 99 recordings of complete tea-making (2.51 hours). 

Sub-goal Trials Duration (hours) 

Pour kettle 138 0.64 

Add milk 123 0.41 

Add sugar 120 0.34 

Add teabag 144 0.31 

Fill kettle 146 0.71 

Remove teabag 134 0.63 

Stir 138 0.56 

Toy(1) 26 0.07 

Boil water 125 0.22 

Toy(2) 30 0.11 

Full trial 99 2.51 

Table 1: Details of recordings of data used in the experiments reported in this section. 

2.3.2 Effect of combining sensor-based and Kinect-based features 
Figure 8 shows recognition accuracy for the sub-goal “fill kettle” using only the data from the 
sensors in the kettle CIC (left) and the CIC information plus Kinect hand-coordinates (right). 
In both graphs the horizontal axis shows the results of varying the number of Gaussian 
components in the “toying” model, while the different colored curves correspond to different 
numbers of states in the sub-goal (“fill kettle”) HMM. 

The left-hand graph in Figure 8 shows that with 8 or more Gaussian components in the 
“toying” model and up to 5 states in the sub-goal model, a recognition accuracy of 90% can 
be achieved. As this result does not use hand coordinate data from Kinect, and the water 
jug does not have a CIC, this result relies entirely on changes in the weight of the kettle. 
The fact that this is the only useful cue to the “fill kettle” sub-goal also explains why so few 
states are needed in the sub-goal model. The right-hand graph in Figure 8 shows the 
corresponding results when hand-coordinate data from Kinect is included. In this case, the 
accuracy increases to over 95%. In other words, the inclusion of the Kinect hand-coordinate 
data through the mechanism of Gaussian neighborhoods reduces the error rate by over 
50%. 
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Further improvements have been made to the sub-goal model for “fill kettle” so that 
recognition accuracy is now close to 100% using the kettle CIC and Kinect. Performance is 
similarly high for the other sub-goals where significant use can be made of the CIC sensors. 
For example, recognition accuracy for “pour kettle” and “add milk” are currently 98.5% and 
99.6% respectively. 

 
Figure 8: Comparison of recognition accuracy for the sub-goal “fill kettle” using just CIC 
sensor information (left) and CIC sensor information plus Kinect hand coordinates (right). 

2.3.3 Recognition of “add tea-bag”, “add sugar” and “remove tea-bag” 
The “add tea-bag”, “add sugar” and “remove tea-bag” sub-goals are referred to as front 
actions because the containers are located at the front of the table. These are the most 
challenging sub-goals to recognize because the containers are not fitted with sensors and it 
is not possible to directly instrument a tea-bag, used tea-bag or sugar cube. Recognition 
relies entirely on Kinect hand coordinate data and very small changes in the weight of the 
mug. 

Figure 9 shows the result of a recognition experiment to detect the three front actions using 
only hand coordinate data from Kinect together with the Gaussian neighborhoods for the 
tea-bag container, sugar container, used tea-bag container and the mug. This experiment 
differs from the previous one in that a single detector is being used for all of these sub-goals. 
In other words the sub-goal detector contains three sub-goal HMMs (for “add tea-bag”, “add 
sugar” and “remove tea-bag”) plus a single “toying” model. The figure shows that with a 
“toying” model with at least 8 Gaussian components error rates of between 20% and 30% 
can be achieved. It is interesting to note that the best performance is achieved with small 
sub-goal models (just three states). 

Figure 10 shows the results of the same experiment but using the outputs of the FSRs in 
the mug CIC in addition to the Kinect hand coordinate data. Including the FSR data reduces 
the error rate to between 10% and 20%. An interesting difference between this and the 
previous result is that the best performance is now obtained with the bigger sub-goal HMMs 
(10 states) and the smallest model gives the poorest result. Presumably this is because the 
sequential structure of the signal becomes more complex when the FSR data is added. 

Figure 21 shows the results of the same experiment but using Kinect hand (x,y) coordinates 
plus their derivatives, and the FSR outputs from the mug, milk jug and kettle CICs. The 
derivatives of the hand coordinates allow the system to distinguish between hand 
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movements that pass through the relevant Gaussian neighborhoods and those which pause 
in these neighborhoods, as would be the case for adding a tea-bag or sugar or removing a 
used tea-bag. The relevance of the FSR outputs for the milk jug and kettle is that these 
should be constant, and if they are not then the user is probably doing something other than 
one of the front actions. 

 
Figure 9: Recognition accuracy for the three “front actions” using Kinect hand coordinate 
data only. 

 
Figure 10: Recognition accuracy for the three “front actions” using Kinect hand coordinate 
data plus the outputs of the FSRs in the mug CIC. 
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The use of these additional sensor inputs reduces the error rate for the front actions to less 
than 10%, provided that the sub-goal models are sufficiently long (more than 4 states) and 
the toying model is sufficiently complex (more than 32 Gaussian components).  

 
Figure 21: Recognition accuracy for the three “front actions” using Kinect hand coordinate 
data and derivatives, plus the outputs of the FSRs in the mug, milk jug and kettle CICs. 

2.3.4 Effect of 50Hz sample rate 
In the original version of the CogWatch system the sensor outputs were sampled at 200Hz. 
However, due to problems with the reliability of the Bluetooth connection the sample rate 
was reduced to 50Hz. Action recognition experiments were conducted using 200Hz, 100Hz 
and 50Hz sample rate sensor data to measure the effect, if any, on recognition accuracy of 
changing the sample rate. 

The experiments confirmed that reducing the sensor data sample rate from 200Hz to 50Hz 
has no significant effect on recognition accuracy. 

 

2.4 Summary of real-time Action Recognition for tea-making 

2.4.1 AR System 
A real-time AR system has been implemented for the CogWatch project. The system uses 
hidden Markov models (HMM) to model the sequences of sensor data that correspond to 
the various sub-goals of the tea-making task. The real-time decoder is a Viterbi decoder 
with partial traceback and is implemented in C#. 

The HMMs that are used in the system are trained on recordings of real tea-making trials 
using the standard Cambridge University Engineering Department HTK HMM toolkit. The 
model formats used in HTK are also used in the CogWatch system. 
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The CogWatch AR has been validated against the HTK Viterbi decoder tool HVite and has 
been shown to give identical results, given the same HMM set and data. 

2.4.2 AR Performance 
The performance of the AR system has been measured in off-line experiments using HTK. 
The results show that for sub-goals where all of the relevant objects are instrumented with a 
CIC (such as “add milk” or “add (boiling) water (to the mug)”) very high recognition accuracy 
can be achieved. For sub-goals where only a subset of the objects are instrumented (such 
as “fill kettle”, where the kettle is instrumented but the water jug is not) error rates can be 
reduced by 50% by including hand coordinate data measured using the Microsoft Kinect 
system. 

For sub-goals where the objects have minimal instrumentation (for example the “front-action” 
sub-goals “add tea-bag”, “add sugar” and “remove tea-bag”), an error rate of less than 10% 
has been achieved by suitable processing of the Kinect hand coordinate data and 
incorporation of sensors that are not directly involved in the sub-goal. For example, if the 
user’s hand follows a typical trajectory for “add tea-bag” but the FSRs attached to the base 
of the kettle show that its weight is increasing, then “add tea-bag” would be an error and the 
evidence points towards “fill kettle”. 

2.4.3 Real-time issues 
The system is able to run a full set of 10 sub-goal detectors in parallel in real-time on a 
standard PC without any issues arising relating to computational load. The main challenge 
for real-time operation has been to remove the delay that is a consequence of the partial 
trace-back algorithm. A simple solution is to set the self-transition probability for the final 
state of the sub-goal HMM to zero. This compensates for the situation where the PDF 
associated with this state may be identical to one of the components of the “toying” model. 

2.4.4 Future Work 
Current work is focusing on three main areas: 

 Data collection: Recordings of the sensor outputs that are obtained when users 
execute individual sub-goals and whole tea-making tasks are being collected at UOB, 
TUM and UPM. These will be used to train the parameters of an improved set of 
sub-goal and toying HMMs. 

 Task and sub-task level HMMs: Recall that a sub-goal can be further split into tasks 
and sub-tasks. This is analogous to splitting a word into phonemes in automatic 
speech recognition, and hence all of the relevant tools already exist in HTK 
(because this is the standard approach in speech recognition). Pilot experiments 
have shown that the decomposition of sub-goals into tasks and sub-tasks can 
improve recognition accuracy. For example, in the sub-goal “add milk” or “pour kettle” 
an explicit sub-task model for “tilt jug (or kettle)” ensures that this critical action is 
part of the sub-goal model and is not overlooked. A minor upgrade to the real-time 
CogWatch AR will be needed to accommodate the partition of sub-goals into tasks 
and sub-tasks. 

 Latency: A consistent and principled approach to reducing latency of the partial-
trace-back algorithm needs to be developed. It is believed that this will be best 
achieved through the explicit partition of sub-goals into tasks and sub-tasks. For 
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example, the “rest” period at the end of a sub-goal could be modelled explicitly and 
not be part of the sub-goal model itself. 

2.5 Exploitation 

The CogWatch consortium appreciates the need to exploit the technology that has been 
developed under CogWatch, and considerable thought has been given to the exploitation of 
the real-time AR. 

The principles that underpin the algorithms inside the AR are not new. The value of the real-
time AR system stems from its embodiment of “know-how” rather than anything that is 
patentable. 

It has already been explained that the CogWatch AR is compatible with the standard 
Cambridge University HTK system. This is used in hundreds of laboratories worldwide to 
build experimental HMM-based speech recognition systems. Increasingly it is also being 
applied to other applications, because it is generic and can be used to model and detect 
patterns in any sequential data. HTK includes a tool for off-line Viterbi decoding (HVite) but 
there is no compact tool for real-time decoding that can also support multiple, parallel 
decoders (like the CogWatch AR can). 

It has been decided that the best way to obtain maximum benefit from the effort that has 
been invested in the CogWatch AR is to share it as a free download via a site such as 
GitHub. This will require some improvement of the basic software, which will be done. The 
standard license used by GitHub stipulates that any software that is developed using the 
CogWatch AR would also need to be shared through the same site. Any user that is 
unwilling to follow this arrangement would be required to negotiate directly with the 
developers of the software (UOB) for a commercial license. 
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3. SEGMENTATION AND KINEMATIC-BASED RECOGNITION OF 
TEA MAKING IN HEALTHY SUBJECTS UND PATIENTS WITH 
ADL DEFICITS 

3.1 Introduction 

This part of the deliverable reports results from experiments investigating the potential of 
kinematic analyses to support action recognition (AR) in the Cogwatch systems. Likewise, 
the kinematic characteristics of the multi-step action of tea making are described in healthy 
subjects and in patients with ADL deficits following stroke. 

The decomposition of selected activities of daily living, defined as action goals, into the 
constituent sub-actions, defined as sub-goals, is an essential part of the Cogwatch system’s 
architecture. The task of the activity recognizer is to identify the current sub-goal on-line 
from sensor signal acquired by the coasters and by the Kinect. As outlined in the present 
and previous Cogwatch reports, Hidden Markov Models have been implemented for the 
purpose of activity recognition. This statistical approach has a limited precision and 
depending on various factors, decisions may be ambiguous (see above). Information about 
the kinematics of hand movements may be beneficial to increase the precision and 
decrease ambiguity of activity recognition.  

In a previous study we found that kinematic information of the hand movements can be 
sufficient to detect and identify the sub-actions of the tea making task (see Deliverable 
D 3.1). However, when the sub-actions are executed with variable order and in particular 
when stroke patients with slowed movement execution are investigated the precision of this 
method decreases substantially. Therefore we evaluated the combined use of the signals 
from the Cogwatch instrumented coasters and from hand kinematics (Hughes, Parekh, & 
Hermsdörfer, 2013). The processing involved two steps. Characteristic events in the coaster 
signals identified the sub-action and marked its initial and the final phase. Backward-search 
and forward-search for local minima in the absolute velocity profile then served to locate the 
exact beginning and the end of the sub-action. This method enabled to identify and extract 
the sub-actions or action segments from the stream of data. The accuracy of the approach, 
as assessed by comparison with video recordings, was between 60 and 90 % of correctly 
identified and extracted action segments. The accuracy depended strongly on whether the 
sub-actions yielded characteristic sensor signals. Another limiting factor was the quality of 
the coaster data that might become less of a problem due to change from 200 Hz to 50 Hz 
coaster data transmission with fewer transmission errors (see elsewhere in this report). 

The present report on hand kinematics did not involve sub-action identification using the 
coaster signals. Rather the segments were identified using video recordings and kinematics 
was used for fine adjustments of start and end. Thus the results always relate to the correct 
action segment which was considered a prerequisite for the present analysis. One has to be 
aware however, that an application of kinematic data in the Cogwatch system demands 
online automatized segment detection as suggested by Hughes et al. (2013). 

To assess the kinematic characteristics of hand movements dependent on the sub action, 
the particular hand used, and the presence of AADS impairments, we first calculated 
various kinematic measures for the movements of both hands in nine healthy subjects and 
in seven stroke (CVA) patients. Depending on characteristics of the individual lesion, 
patients may be able to use both hands in their daily activities or they may have to rely on 
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their ipsilesional hand when the function of contralesional hand is absent due to plegia. 
Therefore tea making was assessed with all possible combinations of bimanual and 
unimanual hand use. 

 

3.2 Materials and Methods 

3.2.1 Task and Procedure 
In the version of the tea-making task tested here, participants are instructed to prepare a 
cup of tea with milk and one sugar cube. Thus following items were placed on the table: 
kettle, teabags, milk, sugar cubes and an additional distractor item (instant coffee jar).  

Following conditions were tested: 

 bimanual: use of both hands 
 unimanual: use of the ipsilesional hand in patients and the dominant hand in healthy 

subjects, respectively 
 unimanual: use of the contralesional hand in patients and the non-dominant hand in 

healthy subjects, respectively 

Every condition was repeated once, resulting in a total of six trials. The order was bimanual, 
unimanual (ipsilesional / dominant), unimanual (contralesional / non-dominant). 

The settings of the objects available in the task are shown in Figure 12. Starting positions 
for the left and the right hand are represented by the labeled papers. In the beginning of 
each trial, the water jug is filled with approximately 0.5 liters of preheated water, the milk jug 
is filled, the teabag labels are prepared for an easy entanglement, particular in unimanual 
trials, and the kettle body is empty. The containers handles are directed towards the 
subject. 

 
Figure 12: Experimental setting for the tea-making task including a water jug, milk, a plate 
for used teabags, teabags, sugar, coffee, a kettle, a mug and a spoon. 
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Until now 9 controls and 7 CVA patients (3 with left brain and 4 with right brain damage) 
were tested and analyzed, 67 trials in total, of which 41 were performed by controls, 16 by 
patients with right brain damage (RBD) and 10 by patients with left brain damage (LBD). 
Patients were recruited from the Clinic for Neuropsychology at the Hospital München-
Bogenhausen in Munich. Patient's age ranges from 47 to 79 years with a mean of 63 
(±9.1 y) years and time since stroke between 0.5 and 6.5 years with a mean of 2.5 (±2.2 y) 
years. Controls have a mean age of 70.9 years (±3.4 y). One of the LBD patients, four of the 
RBD patients and three of the control subjects were male. Subjects were tested for the 
handedness by the Edinburgh Handedness Inventory (EHI). All CVA patients but one LBD 
patient and all controls subjects but one were right handers, almost all of them strong (13). 

 
Code Age Sex Side of Brain 

Damage 
Paresis Time since Stroke EHI 

(%) 
S20 47 M Left Yes 1y 100 

S22 70 W Left Yes 0.5y 100 

S36 63 W Left Yes 0.5y 0 

S85 70 M Right Yes 6.5y 68 

S93 58 W Right Yes 3y 100 

S96 79 M Right Yes 4y 100 

S115 64 M Right Yes 2y 80 

Mean 63 ± 8.33    2.5 ± 2.2  

Table 2: Demographic and clinical data of patients tested in the tea-making task. 

Subjects are asked to wear a SMI-ETG eye tracking device during task performance. The 
eye tracking glasses incorporate a HD scene camera with a sampling rate of 30Hz. 
Fixations are identified and assigned to fixated objects off-line.  

Positional data of both hands are recorded with the use of 5 Oqus Motion Capture cameras 
included in a Qualysis motion capturing system with a sampling frequency of 120 Hz, three 
passive markers were attached to each hand in the mid-palm section. For the analysis only 
one marker was used, the additional two were attached for a better recording reliability and 
in case one or two markers get lost, e.g. by scratching of the subject. 

The mug, the milk jug and the kettle's base and body have force and acceleration sensors 
with a sampling rate of 200Hz (now 50Hz, see elsewhere in this report) attached. These 
instrumented coasters are custom made by UOB. 

 

3.2.2 Segmentation 

In a first step data streams are synchronized using MatLab and a Visual C executable file. 
The coarse boundaries of the action segments are manually defined via the SMI-ETG HD 
scene camera's video data. The fine adjustment of action-segments is then performed with 
the use of hand kinematics in MatLab. Figure 13 shows an example of the data 
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synchronization with action segmentation of the tea-making task, performed by a CVA 
patient in a bimanual trial. In the upper row fixated objects are indicated using a color code 
(see legend on the right side of Figure 13). Note the dominance of kettle fixations in the first 
and mug fixations in the second half of the trial following the demands of waiting, pouring 
and monitoring the mug's filling level. The lower two lines (yellow and green, baseline at '0') 
show the tangential velocities of right and left hand movements with a more intense activity 
in the first 3 sub-segments of the task. The graphs in the mid-section are the most relevant 
data of the objects sensors. Note the boiling of the water in the blue kettle acceleration data 
and impact of the rotation when pouring the heated water into the mug which can be also 
seen in the orange graph, displaying the force sensors of the mug. The waiting time until the 
water in the kettle is boiling is cut out from the data stream as indicated by the thick vertical 
lines. The resulting duration of the task execution is 132s. The numbers refer to the 
identified sub-segments. Segment 5, removing the teabag, is missing and the sequence of 
segments 6 and 7, adding milk and sugar, is inverted. Deplorably, such complete sensor 
data is the exception, so the entire action segmentation process is still done manually. 

 
Figure 13: Example of the synchronization of data streams with action segmentation of the 
tea-making task (bimanual). 

After being synchronized, data are segmented into discrete actions and analyzed. The 
whole task is segmented into the following eight action segments (Humphreys & Forde, 
1998 in Forde et al., 2010): 
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1. pour water in the kettle 
2. switch the kettle on 
3. place a teabag in the mug 
4. pour heated water into the mug 
5. remove the teabag 
6. add milk 
7. add one sugar cube 
8. stir the tea 

Figure 14 shows an example of action segmentation for one trial performed by a patient. 
Figure 15 shows the number of executed sub-segments per trial for the control group and 
the patient groups with left and right brain damage as well as and the frequency of 
occurrence for the different sub-segments per trial. Note that segment 5 and 8 are 
frequently omitted, especially in the patient group with right brain damage. The number of 
executed sub-segments per trial is mainly influenced by sequence omissions. 

 
Figure 14: Hand velocity in m/s and segments identified for a patients’ trial. Note that only 
segments 1, 2, 3, 4, 6 & 7 were executed and their order was mixed. 

 

 

 

 

 

 

 

 

Figure 15: Number of sub-
segments performed per trial and 
average frequency of occurrence 
of the different sub-segments in 
the control group and the patient 
groups (LBD, RBD). 

 

Frequency of occurrence 
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3.2.3 Kinematic analysis  
Positions and velocities of the hands are determined from the motion recording and 
smoothed using a 1s LOESS filter ('local regression'). Following measures are determined 
for the complete action and action segments: 

 maximum peak velocity 
 movement times 
 path lengths 

'Maximum peak velocity' describes the maximum tangential speed reached in the segment 
respectively in in the whole trial. 

'Movement times' defines the time to complete the sub-segments respectively the whole 
task without the waiting period for the boiling of the water which is usually distinguished by 
resting hands. 

'Path lengths' is the tangential distance traveled by the single hands. Measured path lengths 
can be increased due to additional action as well as non-goal-directed movements, changes 
of directions or even tremors. 

 

3.3 Results 

Performance of healthy control subjects 

The overall movement times for the different task conditions, bimanual, unimanual right and 
unimanual left, do not differ essentially in the control group (Figure 16). They need a little 
more than a minute to prepare the demanded cup of tea, time to heat the water excluded. 

 

 

 

 

 

Figure 16: Movement time in 
total for the different task 
conditions in controls. 

 

 

 

Figure 17: Movement time for 
the different sub-segments in 
the bimanual task condition in 
controls. 



Restricted 

  

 

 

Grant Agreement # 288912       CogWatch – TUM – D3.2.2                        Page 36 of 60 

 

 

Bimanual right Bimanual left Unimanual right Unimanual left
0
2
4
6
8

10
12
14
16
18
20
22
24

Path Length

for different task conditions

Control

pa
th

 le
ng

th
 in

 m
et

er
s

#1 #2 #3 #4 #5 #6 #7 #8
0

1

2

3

4

5

6

Path Length

for the different subsegments, bimanual

Control right
Control left

pa
th

 le
ng

th
 in

 m
et

er
s

Looking at the sub-segments of the bimanual task condition the control group needed very 
different time periods to execute the subtasks. Segments 1 (pour water in the kettle), 4 
(pour heated water into the mug) and 5 (remove the teabag) are the most time demanding 
sub-segments (Figure 17). 

The path length travelled by the hand(s) did not differ between the unimanual task 
conditions but for the bimanual condition (Figure 18). There, the right hand and particularly 
the left hand have a shorter path than the hands in the unimanual condition. The sum of the 
distance of both hands during bimanual execution is however clearly larger than for one 
hand under unimanual conditions. Thus path length seems not strictly optimized under 
bimanual conditions. This may be due to enable better control in subtasks like pouring 
liquids or placing the teabag and / or to avoid awkward positions and movements during the 
task. 

 

 

 

 

 

Figure 18: Overall path length 
for the different task conditions 
in controls. 

 

 

 

 

 

Figure 19: Path length for the 
different sub-segments in the 
bimanual task condition in 
controls. 

 

 

As displayed in Figure 19, path lengths for the different sub-segments cover a wide range. 
Interestingly, the ratio between the path length of the right hand and the left hand is not 
changing that much (1.82 ± .44), which speaks against the hypothesis of better control in 
subtasks. 

The maximum velocity peak in the control group interestingly depends on the task 
conditions, with the bimanual condition showing the highest velocity peak for the right hand 
(Figure 20). The assisting left hand in the bimanual condition shows the lowest peak velocity 
and both unimanual conditions do not differ significantly in the their peak velocities. 



Restricted 

  

 

 

Grant Agreement # 288912       CogWatch – TUM – D3.2.2                        Page 37 of 60 

 

 

Bimanual right Bimanual left Unimanual right Unimanual left
0

0.5

1

1.5

2

Maximum Velocity Peak

for different task conditions

Control

ve
lo

ci
ty

 in
 m

/s

#1 #2 #3 #4 #5 #6 #7 #8
0

0.5

1

1.5

2

Maximum Velocity Peak

for different subsegments, bimanual

Control right
Control left

ve
lo

ci
ty

 in
 m

/s

 

 

 

 

 

Figure 20: Maximum velocity 
peak in total for the different 
task conditions in controls. 

 

 

 

 

 

Figure 21: Maximum velocity 
peak for the different sub-
segments in the bimanual task 
condition in controls. 

 

The maximum velocity peak in the sub-segment in the bimanual task condition is highest for 
segments including large reaching or transporting movements like for the replacement of 
the water carafe or the reaching for the teabags, while it is smallest in segments with almost 
only pouring actions and short reaching movements like the adding of the milk (Figure 21). 

 

Performance of patients with brain damage 
Movement Time 

Comparing overall movement duration for the different task conditions between the control 
group and the two patient groups, both patient groups show significantly higher movement 
times for the task (Figure 22). Note that patients had longer movement times in the 
bimanual task condition than in the corresponding unimanual trials. This might be due to the 
demands of intermanual coordination. While none of the patients with left brain damage was 
able to perform the task solely with the contralesional hand, all of the 4 patients with right 
brain damage were able to do so. These patients show fastest task execution in the 
contralesional condition. This unexpected outcome might be due to additional training with 
their impaired hand. 
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Figure 22: Movement time in total for the different task conditions in controls, patients with 
left brain damage and patients with right brain damage. 
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Figure 23: Movement 
time for the different sub-
segments in the three 
task conditions in 
controls, LBD & RBD 
patients. 
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The movement times for the different sub-segments in the bimanual condition reveal a 
comparable tendency as for the overall movement times when comparing the groups: 
Patients need more time for the subtasks. Especially patients with left brain damage show 
extreme variations of the time used for single sub-segments, while patients with right brain 
damage in general need less time in the sub-segments. This seems surprising since their 
overall movement time is even higher than that of the patients with left brain damage 
(Figure 22 & Figure 23). This might be due to longer resting periods between the segments, 
maybe because of sequencing problems 

In the ipsilesional hand condition the patient groups again show longer movement times for 
the different sub-segments, but the LBD patients do not show the extreme timespans like in 
the bimanual condition (Figure 23). Differences between the patient groups appear in 
segments 3, 4, 5, 6 and 7. Patients with right brain damage seem to have problems with 
pouring the heated water into mug and adding a sugar cube, while patients with left brain 
damage need longer to place and remove the teabag from the mug and adding the milk. In 
the unimanual non-dominant / contralesional hand condition movement times for segments 
1 and 8 are very high in the patient group with right brain damage and overall higher (except 
segment 3) than in the control group (Figure 23). 

Path Length 

The overall path lengths for the different task conditions are quite similar for the groups 
(Figure 24). RBD patients reveal a similar contribution of path length across hands as 
controls. This can be expected since the right hand is typically unaffected by paresis in this 
patients. But interestingly the path for LBD patients is longer for their contralesional right 
hand than for their ipsilesional left hand. Apparently they act as slight right handers despite 
their left brain damage and right-sided paresis. 

 

 

 

Figure 24: Path length in total 
for the different task conditions 
in controls, patients with left 
brain damage and patients with 
right brain damage. 

 

 

Figure 25 shows the path lengths for the different sub-segments in the three task conditions 
for the groups. Although, in the bimanual task condition, there seem to be big differences in 
the path lengths of the different subtasks, standard deviations are high and overall control 
and patient groups do not really differ. Similarly, path lengths do not differ between groups 
in any other condition (Figure 25). Obviously on a sub-segment level, the distance travelled 
by the hands does not seem to be affected by the stroke in the patient groups. 
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Figure 25: Path 
lengths for the 
different sub-segments 
in the three task 
conditions in controls, 
LBD & RBD patients. 

 

 

Maximum Peak Velocity 

The overall maximum velocity peak in the different task conditions is lower for the patient 
groups, especially for the LBD patients (Figure 26). This fits quite well with the preceding 
observations, where patients showed longer movement times and comparable path lengths. 
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Figure 26: Maximum velocity 
peak in total for the different 
task conditions in controls, 
patients with left brain damage 
and patients with right brain 
damage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Maximum 
velocity peaks for the 
different sub-segments in 
the three task conditions 
in controls, LBD & RBD 
patients. 
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Patients with left brain damage show extremely low velocity peaks for the different sub-
segments in the bimanual dominant / ipsilesional task condition. Patients with right brain 
damage show lower peaks than the control group but with high standard deviations (Figure 
27). In the bimanual task condition, the contralesional hand of RBD patients produce 
velocity peaks that are overall comparable with the peaks of the control group (Figure 27). 
LBD patients again yield much lower velocity peaks. Maximum velocity peaks in the 
unimanual dominant / ipsilesional task condition are higher in the control group than the 
patient groups for the different sub-segments, but the differences are smaller than in the 
bimanual condition of the task (Figure 27).In the unimanual non-dominant / contralesional 
task condition the standard deviations in the RBD patients are large and the velocity peaks 
are comparable to the controls. 

Movement Time versus Path Lengths 
Figure 28 shows movement time on the x-axis versus the corresponding path length on the 
y-axis for the different sub-segments of the bimanual dominant / ipsilesional task condition. 
The lines indicate the linear regressions for the different groups. For most sub-segments the 
path length – movement time relation of the groups (representing the average velocity) 
follows approximately the linear regression which however does not pass through the axes’ 
origin indicating that during shorter paths mean velocity is relatively high. The regressions of 
the groups differ only slightly in gradients and offset, however, for similar path lengths the 
duration is significantly prolonged in the patients (e.g. 10 s for longer paths).  

 

Figure 28: 
Movement time 
displayed against 
path length in the 
bimanual task 
condition for the 
dominant / ipsi-
lesional hand in 
controls, LBD & 
RBD patients 
including a linear 
regression line for 
each group. 

 

3.4 Discussion 

 
Hand effects in healthy subjects 

Path length in the bimanual condition (both hands accumulated) is clearly longer than the 
path lengths in each unimanual condition, and the movement time is similar or even a bit 
longer in the bimanual condition compared to the unimanual conditions (Figure 18). Thus 
the benefit of a bimanual execution is not obvious at first sight. There could be several 
factors that nevertheless explain the benefits of a bimanual in comparison to a unimanual 
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execution. One reason could be a better and safer handling of liquids for example. When 
pouring water, the assistive hand could fixate the target and therefore produce additional 
path length. Other reasons explaining higher costs in terms of trajectory length and time 
during bimanual execution could be the avoidance of awkward positions and / or reduction 
of efforts for the dominant hand. A reduction of effort for the dominant hand by using the 
non-dominant hand would cause additional path lengths through a shifted starting position 
(hands return to the body when they are not used). The ratio of the path lengths of dominant 
and non-dominant hand is quite stable but due to the shifted starting positions, movement 
time should be raised, which is not the case. The avoidance of awkward positions could be 
another explanation for the increased path lengths under the bimanual condition. When 
checking the videos, it is often observed that in the unimanual conditions, subjects use 
uncommon poses for some of their actions like pouring water into the kettle by using a 
supination of the right hand. Such awkward positions are avoided in bimanual conditions 
when the assistive hand adjusts the position of the object for an easier handling at the 
expense of a longer trajectory.  

 

Kinematic characteristics of sub-segments in healthy subjects 
The comparison of kinematics on a sub-segment level shows relatively stable peak 
velocities, especially of the left hand in bimanual execution (Figure 21). Path length and 
movement are much more affected by the sub-segment (Figure 17 & Figure 19). Since 
movement time is the same for the left and right hand, path length is an even more 
characteristic measure – the path lengths of the left and the right hand are strongly affected 
by the sub-task. The segments can be coarsely divided into three long (1, 4, 5), three 
medium (3, 6, 8) and two short segments in execution time (2, 7). Path length show one 
long (1), three medium (3, 4, 5) and four short (2, 6, 7, 8) segments. Peak velocities are in 
segment 1 highest and in the other segments relatively constant. Further looking at Figure 
25, the linear regression reveals a quite stable increase of movement time with path length 
(see also Figure 21), but with an offset. This offset seems to have two causes, one is the 
distribution of the objects on the working surface and the other the size of the objects used. 

 

Segmentation 
The segmentation into eight sub-segments seems so far useful, although tea with milk and 
sugar is quite uncommon for German elderlies. Segment 1 (‘put water in the kettle’) and 2 
(‘switch kettle on’) are often not separable from each other in the kinematics but are clearly 
two sub-tasks as visible in Figure 15. The execution probabilities of segment 1 and 2 are 
slightly different, even in controls. Segments 5 (‘remove the teabag’) and 8 (‘stir the tea’) are 
the most interesting segments in terms of omissions. Both patient groups, especially RBD 
patients, have very low probabilities of executing these sub-segments and also in controls 
the likelihood to omit is highest in these segments. Interestingly, the overall number of 
performed sub-segments is lower than eight even in controls (Figure 15). RBD patients 
show the lowest numbers which is clearly mostly due to segments 5 and 8. The omission of 
these segments is apparently based on the fact that they are not necessary for succeeding 
in producing some tea ignoring the quality of the own end-state in the task. The omission of 
these segments might be a valuable marker for the difficulty of the task for the subject. 
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Patients’ characteristics compared to controls 
Overall one can state that the patient groups differ from the control group by slower 
execution of the task but no increased path length (Figure 22, Figure 24 & Figure 26). The 
difference between patients with left brain damage and right brain damage is particularly 
remarkable for the timing and velocities (Figure 26). Movement times are more stable in 
controls than in the patient groups, but path lengths and peak velocities are similarly 
variable in all groups. Time differences between the patient groups are rare but meaningful. 
Patients with right brain damage show shorter movement times for the segments than 
patients with left brain damage, but similar movement times for the whole task. Remarkably 
despite they performed less sub-segments (Figure 22, Figure 23 & Figure 28). Apparently 
RBD patients had longer pauses in between the segments to reconsider their further course 
of actions. In the sub-segments they show maximum velocity peaks not much lower than 
the controls (Figure 26). Patients with left brain damage on the other side have long 
movement times in total, comparable to patients with right brain damage, but path lengths 
similar to the control group (Figure 22 & Figure 24). Their movement speed however is very 
low, visible in the low maximum peak velocities in particularly in the bimanual condition and 
also for the ispilesional hand (Figure 26). Concluding patients with right brain damage make 
more pauses and patients with left brain damage move slower than controls. 

 

Hand effects in patients 
As the control subjects, patients show shorter overall movement times in their unimanual 
task conditions. Especially RBD patients have their shortest time to perform the task in the 
contralesional condition (Figure 22). This fast task execution could come from intense 
training with their impaired hand with nearly 4years after stroke. The overall movement time 
in the patient groups is comparable in the bimanual and unimanual ipsilesional task 
condition. Looking at the path lengths, patients show the same characteristics as controls in 
path lengths of bimanual and unimanual trials (Figure 24). A remarkable feature of the LDB 
patients is that according to the path lengths of right and left hand in the bimanual condition 
they seem to act as slight right handers. The path length of their right hand, although 
contralesional and typically paretic, is longer than the path length of their left, ipsilesional, 
hand. This is only switched in segments 3 (‘place a teabag in the mug’) and 6 (‘add milk’) 
(Figure 25). Again this could be at least partially explainable through an additional training of 
the contralesional hand, but still two segments are not in accordance to that phenomenon. 
For the milk an explanation could be that the jug is placed left to the patient on the working 
surface and reaching for it with the right hand would result in awkward positions. Since the 
teabags are placed in front of the subjects, there must be another basis for this behavior. 
Teabags can behave like a pendulum when grasped by the label. Accordingly, their 
controlled placement demands fine motor performance and the patients use their 
ipsilesional hand to succeed in this sub-task. 

Maximum velocity peaks do strongly differ for LBD patients between bimanual and 
unimanual ipsilesional task conditions (Figure 26). In the unimanual ipsilesional condition 
they are restricted to only use their functional hand and therefore reach higher speeds than 
in the bimanual condition where they try to use their impaired - and formerly dominant - 
hand as much as possible. Obviously higher speed of the ipsilesional hand is successfully 
enforced by the condition. 
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Patients’ performance in the sub-segments 
Sub-segment characteristics of the patients are quite comparable to the controls’ in terms of 
path length. Figure 28 shows that patients have similar path lengths but with longer 
movement times for the sub-segments displayed as a shift to the right. Also they exhibit 
more variance along the x-axis. So the average velocities in the sub-segments are 
depending on the sub-segment but follow a rule that is based on the path demands of the 
sub-segment. 

On the sub-segment level RBD patients show prolonged movement times in comparison to 
LBD patients in segments 4 (‘pour heated water into the mug’) and 7 (‘add one sugar cube’), 
while LBD patients have prolonged movement times for segment 3 (‘place a teabag in the 
mug’), 5 (‘remove the teabag’) and 6 (‘add milk’) (Figure 23). Interestingly segments 4 and 7 
use objects that are right from the subject’s midline and RBD patients should be fine with 
their ipsilesional hand. Segments 3, 5 and 6 succeed either on the left side of the subject or 
include using the teabags and LBD patients are here using their ipsilesional, unimpaired 
hand. A prolonged movement time in this case is hard to explain but a possible solution 
could be active inhibition to not using their contralesional hand. Path lengths of the sub-
segments only show anomalies in the bimanual condition for the ipsilesional hand. Here 
RBD patients have longer path lengths in segment 4 (‘pour heated water into the mug’) and 
LBD patients in segment 6 (‘add milk’) and both groups lower path lengths than controls in 
segment 1 (‘put water into the kettle’) (Figure 25). Despite all three segments include 
pouring movements and transportations of containers filled with a liquid they have very 
different path lengths. It may be that patients produce a straighter and slower trajectory in 
segment 1, while controls that are moving the container with higher speed and have to 
describe a more curved movement path. Segment 6 in LBD patients and segment 4 in RBD 
patients are both executed with their ipsilesional, functional hand and therefore they are 
using a more similar trajectory to the controls, although they are still slowed. 

 

Conclusions for action recognition 
The results for the patient group indicate that an action recognition algorithm trained with 
data from healthy subjects would also work on stroke patients if the system is not sensitive 
to prolonged execution times and decreased velocity peaks. Technical problems with 
latencies of action recognition would even be reduced in patients with longer movement 
times and lower peak velocities. Although path length and movement time are very variable 
in all groups, their relation follows a more or less constant proportion (Figure 28). The path 
lengths and therefore the trajectory of the patients’ movements are the most comparable 
measure to the control subjects and this seems to offer a promising opportunity for the 
action recognition system. This knowledge can potentially improve approaches to action 
recognition using marker-based or video based methods. Additional data collected from 
object coasters and modelling (HMMs) could be used to increase the reliability of the action 
recognition system allowing scope for implementation as a home-based rehabilitation 
system. For implementing further ADLs training data of healthy subjects could be sufficient, 
so that the capability of the system can easily be expanded. 

 

 



Restricted 

  

 

 

Grant Agreement # 288912       CogWatch – TUM – D3.2.2                        Page 46 of 60 

 

 

4. ACTION RECOGNITION FOR TOOTH BRUSHING 

4.1 Acoustic identification of tooth-brush position location 

4.1.1 The second CogWatch prototype system 
The second CogWatch prototype system is a rehabilitation system designed to re-train 
stroke patients to brush their teeth. One of the main challenges in this application is to 
automatically identify the location of the head of the toothbrush in the mouth, so that the 
system can monitor that the teeth are brushed in all locations in the mouth. 

4.1.2 Categorization of mouth positions 
A pilot study was conducted into automatic identification of the position of the toothbrush 
head in the mouth. For the purposes of this study it was necessary to partition the mouth 
cavity into a number of distinct regions, which define the ‘classes’ for automatic 
classification. 

Mouth

Top Bottom

TF TB BF BB

TFI TFO TBL TBR

TBLI TBLO TBRI TBRO

BFI BFO BBL BBR

BBLI BBLO BBRI BBRO

L1
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Figure 29: Hierarchical description of the partition of the mouth cavity into different location 
for tooth-brushing. 

Figure 29 shows a hierarchical tree representation of the partition of the mouth into regions 
for toothbrush head position location. Level 1 is split into Top and Bottom. Level 2 adds 
Front and Back. Level 3 splits classes at the front into Inner & Outer and classes at the back 
into Left & Right. Level 4 splits all back classes into Inner & Outer. A particular position is 
labelled using an acronym that indicates the path through the hierarchy which is required to 
reach that position. For instance, BBRO stands for Bottom-Back-Right-Inner. 

4.1.3 Automatic identification of toothbrush head location 
A number of approaches to this problem are being evaluated, including the use of an 
instrumented toothbrush that has an accelerometer, gyroscope and magnetometer 
embedded in its handle, and the use of hand tracking systems based on Kinect or Leap. 

An alternative and novel approach is to use audio recordings of tooth-brushing. The audio 
data would be captured using an external microphone, either mounted externally in front of 
the subject’s mouth (for example, a small microphone could be embedded in a bathroom 
mirror) or head-mounted. It might also be possible to use an array of microphones with 
beam-forming to achieve some degree of noise robustness. 
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Figure 30: Spectrogram of a five second recording of brushing teeth in the back-bottom-left 
region of the mouth. 

There are two motivations for this approach. First, even if the mouth shape is kept constant, 
the audio signal will depend to some extent on the location of the toothbrush head in the 
mouth. Second, in reality the mouth shape will not be kept constant and instead the jaw and 
tongue will move during tooth-brushing to facilitate access to different teeth. This will 
change the resonance properties of the mouth cavity, which will change the properties of 
the acoustic signal. More specifically we can think of the tooth-brush head as a sound 
source during brushing, and the resonances of the mouth cavity will modify the spectrum of 
that sound in different ways as the mouth shape changes. 

 

 

4.2 A corpus of recordings of tooth-brushing 

4.2.1 Audio data collection 
A corpus of audio recordings of tooth-brushing was collected. Each recording corresponded 
to brushing in a particular location in the mouth in Figure 29. The recordings are stereo and 
sampled at 16kHz. The left channel was linked to a head-mounted microphone, with the 
microphone cell positioned about 2cm from the mouth on the right side. The right channel 
was linked to the remote omnidirectional microphone, positioned about 30cm directly in front 
of the mouth. 

The recordings are catalogued in Table 3. They consist of 80 recordings, each of 
approximately 15 – 20 seconds duration, totaling 1440.8 seconds. The recordings were all 
made by the same individual using the same toothbrush. 
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4.2.2 Example acoustic signals for tooth brushing  
Figure 30 shows a spectrogram of a five second recording on an individual brushing teeth in 
the back, bottom left-hand side of his mouth. For those who are not familiar with a 
spectrogram, the horizontal axis is time (in seconds) and the vertical axis is frequency in Hz. 
The recording was sampled at 16kHz, and so the maximum frequency component is at 
8kHz. The grey scale represents the power at a particular time and frequency. The 
spectrogram was created using the UCL Speech Filing System (SFS)1. 

Two elements of structure are evident from the figure. The regular vertical bands 
correspond to the dynamics of brushing, with the gaps between the bands indicating times 
when the toothbrush was at rest. The fact that there are approximately 7 of these bands per 
second indicates a brushing frequency of about 3.5Hz. The less evident horizontal bands 
indicate prominent frequencies in the audio signal. Our premise is that at least some of 
these are due to the resonances of the mouth cavity and hence will change as the shape of 
the mouth cavity changes.  

For back-bottom-left brushing (Figure 30), these resonances occur at approximately 1200 
Hz, 2800 Hz, 4250 Hz and 6750 Hz. 

 

Class Number of 
Recordings 

Average Recording 
Duration (sec) 

Total Duration of 
Recordings (sec) 

BBL 12 16.7 201.0 
BBR 12 16.5 198.5 
BFI 8 18.5 147.7 
BFO 8 21.1 168.9 
TBL 12 18.0 216.5 
TBR 12 18.6 222.6 
TFI 8 16.0 128.0 
TFO 8 19.7 157.6 

Table 3: Statistics of the recordings of tooth-brushing that were made for the pilot 
experiment. 

 

From the perspective of speech production, the broad band of high frequency energy in 
Figure 31 is similar to that which one would expect to be present in a sound such as /s/, 
which is articulated by creating turbulence at the front of the mouth with the teeth (almost) 

                                                

 

 

 

 

11 www.phon.ucl.ac.uk/resource/sfs/ 
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closed. Figure 30 is more similar to the spectrogram that one would expect to observe for a 
vowel sound. 

 

Figure 31 shows the corresponding spectrogram for a five second recording of brushing in 
the top-front-outside of the mouth. In this case there are resonances at approximately 1250 
Hz, 3200 Hz and 4750 Hz. The highest frequency resonance in Figure 30 is not evident in 
Figure 31. However, Figure 31 shows a broad range of high energy over high frequencies. 
Because the brushing in Figure 31 is at the front of the mouth, and because the brushing is 
on the outside of the teeth, the mouth may be closed and in this cased one would expect 
the resonance frequencies of the mouth to exert less influence. 

 

 

 

 
Figure 31: Spectrogram of a five second recording of brushing teeth in the top-front-outside 
region of the mouth 

 

Figure 32 shows a spectrogram for a five second recording on teeth-cleaning with the brush 
cleaning the top-front-inside of the mouth. Because the mouth is at least partially open, the 
resonant frequencies in the high frequency regions are more evident than in Figure 31 
(though they are faint). 
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Figure 32: Spectrogram of a five second recording of brushing teeth in the top-front-inside 
region of the mouth 

4.2.3 Initial conclusions 
This analysis appears to support the hypotheses that the different mouth positions adopted 
for brushing teeth in different locations give rise to distinct resonance properties, and that 
these distinctions are sufficient to distinguish between the different brushing locations from 
the audio signal alone. 

The next section presents the results of automatic classification experiments to test this 
hypothesis. 

 

4.3 Automatic identification of tooth-brushing position from audio 
data 

4.3.1 Method 
This section describes a set of experiments in automatic tooth-brush head position detection 
using the data described in Section 4.2. The experiment uses a simple statistical pattern 
recognition system based on Gaussian Mixture Models (GMMs). 

4.3.1.1 Feature extraction 
The first step is to apply feature extraction to each of the audio recordings. The objective is 
to convert the recording into a sequence of feature vectors, where the type of feature vector 
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is chosen to emphasize properties of the acoustic signal that are useful for classification and 
to suppress those that are not. The number of potential analyses is huge and at this stage it 
is not possible to evaluate all of them experimentally. Hence the particular method that is 
adopted is the most common approach to feature extraction used in automatic speech 
recognition. 

These feature vectors, called Mel Frequency Cepstral Coefficients (MFCCs) are based on a 
spectral analysis of the signal, and would therefore be expected to exhibit the types of 
differences in resonance structure described in Section 4.2.2. The procedure for calculating 
MFCC vectors is described fully in the HTK Book (Young et al. 2006) and many other 
sources. 

Briefly, the first 25 ms of recording are considered and a Hamming window is applied, 
followed by a discrete Fourier transform (DFT). The modulus and then the logarithm of the 
DFT values are taken (so that phase information is ignored). The frequency scale of the 
DFT spectrum is converted into a non-linear perceptually-motivated scale called the mel 
scale. For a 16 kHz signal, this typically results in a 26 point mel frequency log DFT. Finally, 
a discrete cosine transform is applied to give a 26 point cepstrum, the high order cepstral 
coefficients are discarded, and the remaining ‘static’ cepstral features are supplemented 
with approximations to their first and second order derivatives. The resulting vector typically 
has 39 dimensions. The window is then shifted along in time by 10ms, and the whole 
process is repeated. This results in a sequence of 39 dimensional mel frequency cepstral 
vectors (MFCC vectors), one every 10ms. For more details please refer to the HTK book 
(Young et al. 2006). 

 

4.3.1.2 Statistical modelling 
For each tooth-brushing location of interest, a multivariate probability density function (PDF) 
is constructed which characterizes the distribution of MFCC vectors for recordings of tooth-
brushing in that location. In principle one could use a multivariate Gaussian PDF for this 
purpose. However, experience from speech recognition suggests that the true distribution of 
data is not unimodal, and hence that a single multivariate Gaussian PDF may be too simple. 
The standard solution is to use a multivariate Gaussian mixture PDF, or Gaussian Mixture 
Model (GMM). 

An   component GMM is a PDF   of the form: 

 ( )  ∑     ( )
 
   , 

where   is a feature vector,         are real numbers between 0 and 1 satisfying  

∑     
 
   , 

and each    is a multivariate Gaussian PDF. 

The parameters of an   component GMM are the means         and covariance matrices 
        of its component PDFs and the mixture weights        . These parameters are 
estimated automatically from data using the E-M algorithm.  

As training data is typically limited it is often assumed that the covariance matrices    are 
diagonal, and this assumption was made in these experiments. 
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4.3.2 Experiments 

4.3.2.1 Experiment 1: Two-classes, front vs back 
In this experiment a total of 72 recordings were used, totaling 1074.7 seconds in duration. 
The recording statistics are shown in Table 4. All recordings were taken from those listed in 
Table 3. 

 
Class 

Number of 
Recordings 

Average Recording 
Duration (sec) 

Total Duration of 
Recordings (sec) 

Front 30 15.2 455.8 
Back 42 14.7 618.9 

Table 4: Recordings used in experiment 1. 

This experiment was composed of 30 unique sub-experiments from which an average 
accuracy was determined. In each sub-experiment, the models were trained with 29 Front 
recordings and 41 Back recordings. The models were tested with 1 Front recording and 1 
Back Recording in each sub-experiment. In this way the amount of data available for 
training was maximized and the test data was never included in the training data. 

The experiment was repeated using models with different numbers of GMM components. 
The results are shown in Figure 33. 

As one would expect, the results on the training data (blue graph) are better than those for 
the test data (green graph). The performance on the test and training sets improves as the 
number of GMM mixture components is increased up to 44, beyond which the classification 
rate on the test set is close to 100% (the figure of 98.33% for a 64 component GMM 
corresponds to 1 error). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Results of classification experiments to distinguish between tooth-brushing at the 
front and back of the mouth. 
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4.3.2.2 Experiment 2: Two-classes, top vs bottom 
In this experiment a total of 104 recordings were used, totaling 1904.8 seconds in duration. 
The recording statistics are shown in Table 5. All recordings were taken from those listed in 
Table 3.  

 

Class Number of Recordings Average Recording 
Duration (sec) 

Total Duration of 
Recordings (sec) 

Top 52 18.8 978.0 
Bottom 52 17.8 926.8 

Table 5: Recordings used in experiment 2. 

 
This experiment was composed of 52 unique sub-experiments from which an average 
accuracy was determined. In each sub-experiment, the models were trained with 51 Top 
recordings and 51 Bottom recordings. The models were tested with 1 Top recording and 1 
Bottom recording in each sub-experiment. The test data was completely new to the system. 

 
Figure 34: Results of classification experiments to distinguish between tooth-brushing at the 
top and bottom of the mouth. 

The results are shown in Figure 34. The classification accuracies for 64 and 128 component 
GMMs are 86.54% and 87.5% respectively. 
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4.3.2.3 Experiment 3: Three classes, back-right, back-left and front 
In this experiment a total of 100 recordings were used, totaling 1877 seconds in duration 
(Table 6). 

This experiment was composed of 30 unique sub-experiments from which an average 
accuracy was determined. In each sub-experiment, the models were trained with 29 BL 
recordings, 29 BR recordings and 39 Front recordings. The models were tested with 1 BL 
recording, 1 BR Recording and 1 Front recording – in each sub-experiment. The test data 
was completely new to the system. 

The experiment was repeated using models with different numbers of GMM components. 
The results are shown in Figure 35. 

 

Class Number of Recordings Average Recording 
Duration (sec) 

Total Duration of 
Recordings (sec) 

BL 30 17.9 536.6 
BR 30 18.3 550.5 
Front 40 19.7 790.0 

Table 6: Recordings used in experiment 3. 

 

 
Figure 35: Results of classification experiments to distinguish between tooth-brushing at the 
back-right, back-left and front of the mouth. 

The accuracy on the test set is 95.6% for GMMs with 32 or more components. 
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4.3.2.4 Experiment 4: Four classes, back-right, back-left, front-inside and 
front-outside. 

In this experiment a total of 92 recordings were used, totaling 1689.3 seconds in duration. 
The data is listed in Table 7. 

Class Number of Recordings Average Recording 
Duration (sec) 

Total Duration of 
Recordings (sec) 

BL 30 17.9 536.6 
BR 30 18.3 550.5 
Front-Inside 16 17.2 275.7 
Front-Outside 16 20.4 326.5 

Table 7: Recordings used in experiment 4. 

This experiment was composed of 16 unique sub-experiments from which an average 
accuracy was determined. In each sub-experiment, the models were trained with 29 BL 
recordings, 29 BR recordings, 15 Front-In recordings and 15 Front-out recordings. The 
models were tested with 1 BL recording, 1 BR Recording, 1 Front-In recording and 1 Front-
Out recording – in each sub-experiment. The test data was completely new to the system. 

The results are shown in Figure 36. For 64 and 128 component GMMs, the classification 
accuracy is 92.2%. 

 

 
Figure 36: Results of classification experiments to distinguish between tooth-brushing at the 
back-right, back-left, front-inside and front-outside of the mouth. 
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4.3.2.5 Experiment 5: Six classes – front-inside, front-outside, bottom-
back-left, bottom-back-right, top-back-left and top-back-right. 

In this experiment a total of 80 recordings were used, totaling 1440.8 seconds in duration 
(Table 8).  

Class Number of Recordings Average Recording 
Duration (sec) 

Total Duration of 
Recordings (sec) 

Front-Inside 16 17.2 275.5 
Front-Outside 16 20.4 326.5 
BBL 12 16.7 201.0 
BBR 12 16.5 198.5 
TBL 12 18.0 216.5 
TBR 12 18.6 222.6 

Table 8: Recordings used in experiment 5. 

This experiment was composed of 12 unique sub-experiments from which an average 
accuracy was determined. In each sub-experiment, the models were trained with 15 Front-
In recordings, 15 Front-Out recordings, 11 BBL recordings, 11 BBR recordings and 11 TBR 
recordings. The models were tested with 1 recording of each class – in every sub-
experiment. The test data was completely new to the system. 

The experiment was repeated using models with different numbers of GMM components. 
The results are shown in Figure 37. The classification accuracies on the test set for 64 and 
128 component GMMs are 84.7% and 86.1%, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Results of classification experiments to distinguish between tooth-brushing at six 
different locations: the bottom-back-right, bottom-back-left, top-back-right, top-back-left, 
front-inside and front-outside of the mouth. 
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4.3.2.6 Experiment 6: Eight classes – bottom-front-inside, bottom-front-
outside, top-front-inside, top-front-outside, bottom-back-left, bottom-
back-right, top-back-left and top-back-right. 

 

Class Number of Recordings Average Recording 
Duration (sec) 

Total Duration of 
Recordings (sec) 

BBL 12 16.7 201.0 
BBR 12 16.5 198.5 
BFI 8 18.5 147.7 
BFO 8 21.1 168.9 
TBL 12 18.0 216.5 
TBR 12 18.6 222.6 
TFI 8 16.0 128.0 
TFO 8 19.7 157.6 

Table 9: Recordings used in experiment 6. 

The results of experiment 6 are shown in Figure 38. The figure shows recognition 
accuracies on the test data of 82.8% and 84.4% for GMMs with 64 and 128 components, 
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Results of classification experiments to distinguish between tooth-brushing at 
eight different locations: the bottom-front-inside, bottom-front-outside, top-front-inside, top-
front-outside, bottom-back-left, bottom-back-right, top-back-left and top-back-right. 
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4.3.3 Summary of classification experiment results 
Table 10 shows a summary of the results from experiments 1 to 6. The table shows results 
on the test set (columns 4 and 5) and training set (column 6 and 7) that were obtained using 
64 and 128 component GMMs. 

Expt. Num 
Class Classes 

64 
Comp 
(Test) 

128 
Comp 
(Test) 

64 
Comp 
(Train) 

128 
Comp 
(Train) 

1 2 Front / back 98.3 100.0 100.0 100.0 
2 2 Top / bottom 86.5 87.5 93.2 96.7 
3 3 Back-right / back-left / front 95.6 95.6 97.5 99.7 
4 4 Back-right / back-left / front-in  

/ front-out 92.2 92.2 96.7 99.4 

5 6 Bottom-back-right / bottom-back-left / top-
back-right / top-back-left / front-in / front-out 84.7 86.1 96.1 98.8 

6 8 Bottom-back-right / bottom-back-left / top-
back-right / top-back-left / bottom-front-in / 
bottom-front-out / top-front-in / top-front-out 

82.8 84.4 96.2 98.8 

Table 10: Summary of classification results. 

The discussion focusses on the results for the test sets. 

Overall, the results are much better than anticipated. However, it must be remembered that 
these experiments are restricted to recordings from a single individual using the same 
toothbrush in a quiet environment. 

It is evident from the table (experiments 1 and 2) that differentiating between brushing in the 
top and bottom areas of the mouth is more difficult that differentiating between the front and 
back regions. This suggests that the differences between the mouth cavity shapes adopted 
for front and back brushing are greater than the differences for top and bottom brushing, at 
least in terms of their effects on the resonances of the mouth cavity, and this is consistent 
with intuition. However, the difficulty seems to be mainly in differentiating between top and 
bottom at the back of the mouth. Adding the top / bottom distinction at the front of the mouth 
(which is the difference between experiment 5 and experiment 6) results in only a relatively 
modest increase in error rate (from 15.3% to 17.2%). 

The difficulty of distinguishing between corresponding top and bottom locations in the mouth 
also explains the higher error rates in experiment 5 compared with experiment 4 
(experiment 5 the same as experiment 4, except that it also involves top / bottom 
distinctions for brushing at the back of the mouth). In this case adding the top / bottom 
distinction approximately doubles the error rate from 7.8% (experiment 4) to 15.3%. 

Comparing experiments 1 and 3 shows the effect of distinguishing between the left- and 
right-sides of the back of the mouth (“front / back” versus “front / back-right / back-left”). 
Focusing on the system with 64 components, adding this distinction results in a 150% 
increase in error-rate, from 1.7% to 4.4%. 

Experiment 4 requires differentiation between inside and outside brushing at the front of the 
mouth, compared with experiment 3. 

In conclusion, acoustic-based identification of tooth-brush head position in the mouth 
appears to be a promising approach. “Top – bottom” distinctions appear to be the most 
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difficult, with an error rate of 15.5% compared with 1.7% for “front – back”. “Left-right” 
distinctions are also relatively easy. 

Of course, in a real application the system would need to be able to deal with different users, 
different tooth-brushes and environmental noise. However, it must be remembered that in a 
real application acoustic-based recognition would not be used on its own but in combination 
with other classifiers. The key question is how similar are the errors made by acoustic-
based classification and more conventional sensor-based classification, and whether their 
outputs can be successfully fused to give improved results. 
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