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EXECUTIVE SUMMARY 

This report discusses the issues that are relevant to the collection of data for action 
recognition and prediction. The main purpose of the report is to explain the technologies that 
a) are currently used in the development of the first prototype, and b) will be used in the 
future to develop the action prediction models for the second prototype, in month 33 of the 
project. 

The report is presented in six main sections, which address the collection and analysis of 
data from the clinical screening phase. Section two begins with a review of kinematic-based 
action recognition, and details previous research that has utilized kinematic technology in the 
context of performance quality in activities of daily living (ADL). Section two concludes by 
presenting primarily data on a Kinematic-based Action Recognition Algorithm (KARA) that is 
being developed by TUM. The utility of such an algorithm is that it can predict actions during 
the execution of a movement, rather than having to wait until the patient has made an error. 
Although this work is still in the preliminary stages, it is expected that future versions of the 
CogWatch prototype will implement KARA. 

Section 3 discusses the use of a low-cost, easy-to-implement motion capture system 
(Microsoft Kinect™) for action recognition. The Kinect™ was compared to a commercially 
available ultrasonic motion capture system (Zebris) during a tea making task. The results 
were promising, and suggested that the Kinect™ may be a viable addition to the CogWatch 
system as a motion capture technology. Present research aims to investigate whether KARA 
is able to distinguish between motions at the lower sampling frequency used by the Kinect™. 

In section 4, we detail information regarding sensor-based action recognition. The EECE 
group at UoB has conducted preliminary experiments to assess the ability of CogWatch 
instrumented coasters (CIC) attached to the base of a kettle to detect sub-goals during four 
contexts (pour, toy, pour-toy, rest). Their results suggest that activity recognition performance 
is poor when the raw CIC data is used, but that simple thresholding of the force sensitive 
resistor (FSR) outputs removes significant variability and improves recognition accuracy. 
UoB-EECE is currently working on improving data analysis methods from CIC outputs, which 
will be the primary basis of action recognition in prototype 1. 

Section 5 discusses the data and results obtained from video recordings in apraxia patients 
and healthy controls during a two tea-making task, which is the ADL scenario chosen for the 
clinical screening phase. The data obtained from these studies has been analysed, and we 
report results on error types, error frequencies, and action sequencing in ADL performance. 
This data has been modelled using Bayesian Logic Networks (BLN) (see D3.1 report on 
action recognition techniques), and will be integrated into the task models used in prototype 
2.   

Last, in section 6 we provide an outlook for data collection and analysis in the upcoming 12 
months, and introduce the tasks that will be used to evaluate prototype 2.  
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1. INTRODUCTION 

This is the 11th month report from CogWatch Work Package 3 “Activity Recognition and 
Prediction”. WP3 involves two of the CogWatch partners, the University of Birmingham (UoB) 
and the Technische Universität München (TUM). In addition, researchers from the 
Universidad Politécnica de Madrid (UPM) have worked with TUM to develop and test 
technologies that are of potential use to the CogWatch system. 

As stated in the Annex, the objectives of WP3 are to: 

• Explore psychological and pattern-based models to construct action recognition 
techniques; 

• Apply these techniques to the data collected from the patient studies to develop an 
action recognition system; 

• Review psychological models and apply advance statistical methods to provide a 
reliable action prediction model that will be able to identify patients’ intentions, predict 
actions and assess the progress of a task.  

There are a variety of technologies that are used to recognize and predict actions in ADL, 
and include video-based, kinematic-based, and non-marker kinematic-based action 
recognition. In order to evaluate error production and action sequencing in apraxia patients, 
video-based technologies will be used. This data will then be manually coded to ascertain the 
types and frequency of errors, as well as grasp selection errors during ADL performance.  
This information is then used to develop the Bayesian Logic Network (BLN) models that will 
be used in the second CogWatch prototype (T3.4).  

Kinematic-based technologies will be used to detect errors as they are unfolding, which can 
be used to provide cueing information to participants about errors before they happen. This 
technology is also used to develop a kinematic action recognition algorithm (KARA), which 
can segment an ADL into action segments using a kinematic-based criterion. Although this 
work is in the preliminary stages, we are confident that KARA can be implemented into the 
second CogWatch prototype. 

Non-marker kinematic-based technologies have also been exploited as a suitable, low-cost 
and easy to implement motion capture system for kinematics analysis in ADL. We have 
recently conducted an experiment that compares the data collected from the Microsoft 
Kinect™ sensor to the data collected from an ultrasonic motion capture system. The data 
indicate a moderate to strong correlation between signals, demonstrating the potential uses 
of the Kinect™ system in cognitive rehabilitation. 

1.1 Proposed timetable 

• First draft September 14th 

• Completion September 23rd 

• Reviewed via UoB-Psychology Quality management 26th September 

• Copy editing end 28th September 

• Submitted to EU October 1st (well within 45 days of nominal deadline). 
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2. KINEMATIC-BASED ACTION RECOGNITION 

One of the corollary aims of WP3 is to analyze and characterize movement production 
quality in patients with apraxia, relative to healthy controls. The study of human movement 
often focuses on kinematics, describing the movements of the body through space and time, 
but without reference to the forces involved (Whittle, 2002; Shumway-Cook & Woollacott, 
2001). Kinematic movement analysis provides insights into the effects of maturation and 
development of motor learning (Thelen, 1995), skill development (Newell & van Emmerik, 
1989; Vereijken, van Emmerik, Whiting, & Newell, 1992), and the effects of peripheral or 
central nervous system injury during ADL (Hermsdörfer, Hentze, & Goldenberg, 2006). In 
addition, kinematic measurements can elucidate the motor strategies in goal-oriented tasks, 
provide essential information of person's motor capabilities, as well as evaluate upper-
extremity therapies (McCrea, Eng, & Hodgson, 2002). For these reason, the study of human 
movements is applied to cerebrovascular diseases which impact the quality of life for 
individuals who suffer from diseases such as Apraxia or Action Disorganization Syndrome 
(AADS) (Bickerton et al., 2011). 

2.1 Previous findings 

The examination of movement production quality in patients with apraxia and healthy young 
and elderly controls is examined using high frequency video cameras, marker-based motion 
capture systems (Ascension, Zebris [TUM], Qualisys [UoB]), and a non-marker-based 
system (Kinect™). The information can also be used to detect gradual deviations from 
prototypical object use and provide instructions in order to achieve more adequate 
movements (see T3.3.2). The following section will provide an overview on the technologies 
applied in the CogWatch project. 

2.2 Marker-based systems  

Motion analysis is typically recorded using marker based techniques. There are various 
systems that utilize different technologies, including cinematographic, electromagnetic 
(Ascension¸ Liberty Polhemus, Flock of Birds), optoelectronic (OptoTrak, CODA, Selspot), 
infrared marker systems (Peak Motus, Vicon), and ultrasonic systems (Zebris). Generally 
speaking, these systems continuously record the 3-dimensional coordinates of small markers 
fixed to predefined body parts. The Technical University Munich currently utilizes ultrasonic 
(Zebris) as well as electromagnetic (Ascension, Polhemus) technology to characterize 
kinematic performance during tool use actions and ADL.  

Electromagnetic systems do not suffer from marker dropouts, provide real time 6-DOF data, 
and are highly accurate. However, they also require that markers must be attached to body 
segments with cables, and the quality of data is influenced by interference from metallic 
objects or other magnetic fields. Optoelectronic systems employ active light emitting diodes 
(LED’s) markers (Ferrigno & Pedotti, 1985; Ladin, 1995), which are triggered and pulsed 
sequentially using a computer. As with electromagnetic systems, the LED’s must be attached 
to body segments via cables.   

In general, the choice of each system depends on the requirements of the user but, although 
marker-based systems are popular and offer precision and the advantage of automatic 
tracking, which eliminates problems with marker merging or misidentification, marker based 
methods have several limitations: (i) markers attached to the subject can influence the 
subject’s movement; (ii) a controlled environment is required to acquire high-quality data; (iii) 
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the time required for marker placement can be excessive; and (iv) the markers on the skin 
can move relative to the underlying bone, leading to what is commonly called skin artefacts 
(Cappozzo, Della Croce, Leardini & Chiari, 2004; Chiari, Della Croce, Leardini, & Cappozzo, 
2004; Rothi & Heilman, 1997). Marker-based systems also relatively expensive and as such 
are not an appropriate choice for the CogWatch system. That said, they will be able to 
provide invaluable information about the quality of movement production, which will be 
integrated into the models that describe actions on a higher level (see T3.3). Furthermore, 
marker-based systems can serve as the gold standard, against which other kinematic 
systems can be compared (e.g., Kinect™). 

2.3 Kinematic-based action recognition algorithm 

In order to recognize actions and errors as they are being executed, we are currently 
developing a kinematic-based action recognition algorithm (KARA), which is capable of 
determining action segments during an ADL. 

2.3.1 Task and Procedure  

In this study, we collected data from a single person (female, 32 years of age) during the 
performance of the tea making task. The instructions specified the sequence in which the 
task should be performed: 1) reach and grasp cup, 2) transport cup to target position, 3) 
reach and grasp tea bag, 4) place tea bag into cup, 5) reach and grasp kettle, 6), transport 
kettle to position over cup, 7) pour water from kettle into cup, 8) place kettle back on table, 9) 
reach for tea bag, 10) dip tea bag into cup. Further, the participant was informed that they 
should use the left hand to perform the task and to rest the right hand on the table. The 
instructions also emphasized that the task be performed at a naturalistic pace. The 
participant performed a total of 20 tea-making trials. The entire session took 30 minutes.  

The apparatus used in the experiment consisted of a water kettle, a cup, a tea bag, and a tea 
bag box, which were placed on a table top (90 cm in height). The objects were arranged so 
that the cup was located 10 cm from the front edge of the table and 40 cm to the right of the 
participant’s body midline. The kettle was located 10 cm from the front edge of the table and 
40 cm to the left of the participant’s body midline. The tea bag box (with the tea bag inside) 
was located 20 cm from the front edge of the table and 30 cm to the left of the body midline.  

Movement data was recorded using an ultrasonic three-dimensional motion capture system 
(Zebris® CMS 30, Medizintechnik GmbH, Tübingen) as the reference system. Specifications 
for the Zebris system are listed in Table 1. This system features three sonic microphones 
which receive packets of ultrasound sent from emitters that can be placed on relevant body 
segments. The system calculates the distance between the receiver and each emitter by 
measuring the time delay between when the ultrasound packet was sent, and when it 
reaches the receivers. After calculating the distance from the three emitters, the coordinates 
of the emitters can be triangulated with an absolute accuracy < 1.0 mm (Overhoff, Lazovic, 
Liebing, & Macher, 2001). 

The Zebris system uses a right-handed Cartesian coordinate system, with the transverse 
plane (front-back) defined as the x axis, the sagittal plane (left-right) defined as the y axis, 
and the coronal plane defined as the z axis. To collect kinematic data from the Zebris 
system, a receiver (1 cm diameter) was fixed to the dorsum just proximal to the space 
between 1st and 2nd metacarpophalangeal joint of the left hand. The spatial coordinates of 
the markers were sampled at 120 Hz. The data were processed by the software WinData 
2.19.14 (Zebris, Medizintechnik GmbH, Tübingen).  
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Table 1. System CMS30 Zebris features 

  System Dimensions  95 x 160 x 235(W x H x D) 

System Weight  1.1 kg 

Sensor Dimensions  360x 320 x 30 (W x H x D) 

Sensor Weight  0.7 kg 

Max number of marker channels  15 

Buffer memory  60 Hz 

Interface to PC  USB/Parallel Port 

Measurement rate  Max. 300 Hz /number of selected markers 

 until 160 Hz- 2.0 m max 

          200 Hz – 1.6 m 

Resolution  1/10 mm 1/100 mm (30cm) 

  
 

2.3.2 Data Analysis  

The tea making task was comprised of ten subtasks, which were broken down into four 
action segments (ASs). AS1 was composed of subtasks 1 and 2 (reach and grasp cup, 
transport cup to target position). AS2 was composed of subtasks 3 and 4 (reach and grasp 
tea bag, place tea bag into cup). AS3 was comprised of subtasks 5-8 (reach and grasp 
kettle, transport kettle to position over cup, pour water from kettle into cup, and place kettle 
back on table). AS4 was comprised of subtasks 9 and 10 (reach for and dip tea bag into 
cup). 

The process of AS identification was achieved by manually segmenting the time series into 
the four ASs, by first recognizing the most characteristic kinematic feature of a given AS, and 
then determining the start and end of that segment based on secondary kinematic 
characteristics.   

AS1 was defined as the time period between when the hand left the start position to the time 
the cup was placed on the target. AS1 was always the first action segment in the time series, 
and was identified by calculating the first two peaks in the resultant velocity profile with a 
value greater than 5000 mm/s. AS1 onset was determined as the time of the sample in which 
the resultant velocity of the hand first exceeded 5% of peak velocity. Movement offset was 
determined as the time of the sample in which the second resultant velocity peak dropped 
and stayed below 5%. 

AS2 was defined as the time period between when the hand reached for the tea bag to the 
time the tea bag was placed in the cup. Analysis revealed that the kinematic features of AS2 
were not as pronounced as the other ASs. As such, AS2 onset and offset were determined 
after all other ASs had been defined. AS2 onset was defined as the time of the sample in 
which the velocity of the hand first exceeded 5% of peak velocity for the resultant velocity 
peak that immediately succeeded AS1 offset. AS2 offset was defined by first determining the 
resultant velocity peak that immediately preceded AS3 onset, and then finding the time of the 
sample in which the second resultant velocity peak dropped and stayed below 5%. 
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AS3 was defined as the time period between when the hand reached for the kettle to the 
time the kettle was placed back on the table top. The most recognizable kinematic 
characteristic of AS3 was the kettle pour subtask. Kinematic analysis revealed that this 
subtask was distinguishable by a lack of velocity peaks within a 1300 - 3000 ms time period. 
The first step in classifying action segment three was to determine all peaks in the resultant 
velocity profile with a value greater than 5000 mm/s, and then calculate the time period 
between each peak throughout the entire time series. When the time period between two 
neighbouring peaks exceeded 1300 ms, and 12% of total movement time, this segment was 
classified as the kettle pour subtask. The peak in velocity that immediately preceded and 
followed the kettle pour subtask that had a peak velocity value greater than 6000 mm/s was 
then determined. The start of AS3 was classified as the time of the sample in which the 
velocity of the hand first exceeded 5% of peak velocity for the peak that immediately 
preceded the start of the kettle pour subtask. The end of AS4 was classified as the time of 
the sample in which the resultant velocity dropped and stayed below 5% of peak velocity for 
the peak that immediately followed the end of the kettle pour subtask. 

AS4 was defined as the time period between when the hand reached for the tea bag located 
in the cup to the time the hand released the tea bag. The most recognizable kinematic 
characteristic of AS4 was the presence of multiple peaks of similar velocities. To this end, the 
first step to classify AS4 was to find three or more peaks in the z velocity profile that featured 
peak velocity values between 3000 – and 10000 mm/s, and that occurred within a 2500 ms 
time frame. To classify the end of AS4, we calculated the time of the sample in which the 
resultant velocity dropped and stayed below 5% of peak velocity for the last identifiable peak 
in the range. The start of action segment was first determined by calculating the 4th 
preceding peak in velocity, and then calculating the time of the sample in which the velocity 
of the hand first exceeded 5% of peak velocity. 

2.3.3 Results and outlook  

The following variables were calculated for each AS: movement time (ms), percentage total 
movement time (%), z dimension peak velocity (mm/s),  resultant peak velocity (mm/s), and 
time to peak resultant velocity (% AS). Average z dimension peak velocity (mm/s) and 
average peak resultant velocity (mm/s) were also calculated for AS4. These are displayed in 
Table 2. 

The preliminary results of KARA indicate that an ADL such as tea making can be divided into 
different subtasks. These subtasks, or action segments, have distinct characteristics, which 
can be classified on the basis of their kinematic traits. The data was collected at a sampling 
rate of 120 Hz, which afforded the possibility to detect critical features in each AS. However, 
it remains to be seen whether KARA is able to accurately detect ASs when a lower sampling 
rate is used (i.e., a 30 Hz sampling rate used by the Microsoft Kinect™ sensor). Furthermore, 
the ability of KARA to segment actions into subcomponents is highly influenced by various 
factors, and as such the present evaluation was performed by one individual, and was highly 
constrained in task context.  
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Table 2. Mean kinematic and standard deviation (in parentheses) values 
during each of the four action segments 

 AS1 AS2 AS3 AS4 

Movement time (ms) 1148 (115) 4140 (364) 6084 (675) 3847 (509) 

Movement time (%) 11.8 (1.3) 26.1 (3.3) 38.19 (2.37) 24.3 (1.7) 

z dimension peak velocity (mm/s) 1437 (386) 6341 (1145) 4341 (1908) 3047 (1235) 

Peak resultant velocity (mm/s) 7585 (888) 8591 (701) 4767 (4403) 9392 (1808) 

Time to peak resultant velocity (% 
phase) 

39.1 (8.2) 10.0 (1.6) 8.9 (7.4) 25.5 (15.3) 

Average z dimension peak velocity 
(mm/s) 

N/A N/A N/A 2377 (404) 

Average  resultant peak velocity 
(mm/s) 

N/A N/A N/A 4329 (854) 

 

In months 11 to month 24, staff from the Research Group “Movement Science” at TUM will 
work to refine KARA so that it is able to automatically segment an ADL with high trial-to-trial 
kinematic variability, different spatial arrangement of manipulated objects, and feature 
interleaving of two subtasks. Furthermore, data will be collected from healthy young adults, 
healthy elderly controls, and apraxic individuals, in order to ascertain whether KARA can 
automatically segment ADL scenarios in populations with different kinematic profiles. Lastly, 
it is hoped that researchers are able to automate the process of kinematic action, not only in 
a tea-making task, but in all ADL scenarios described in section 5.3.  



Public 

  

 

Grant Agreement # 288912               CogWatch – TUM – D3.2.1                                      Page 15 of 48 

 

 

3. NON-MARKER KINEMATIC-BASED ACTION RECOGNITION 

A critical element of the CogWatch system is to provide personalized, long-term and 
continuous cognitive rehabilitation of ADL for stroke AADS patients in a home environment. It 
is being designed to be personalised to suit the needs of individual patients at the same time 
as being practical and affordable for home installation so that rehabilitation takes place in 
familiar environments performing familiar tasks. As such, it is imperative that the home-based 
action recognition system is affordable and easy to implement. Fortunately, emerging 
technologies have led to the rapid development of low-cost and easy to use marker-less 
motion capture systems which offer an attractive solution to the problems associated with 
marker based methods. The most popular of these is the Kinect™ system developed by 
Microsoft.  

In 2011, Microsoft released the Software Development Kit (SDK) focused on Kinect™, which 
has allowed developers and authors to develop and create different applications depending 
on the objective pursued with Kinect™. Developers have designed non-gaming applications 
for areas such as interior design (NConnex), tracking consumer behaviour (Kimetric), and for 
educational purposes (Kinect™ Math UWB B). Regarding the present work, the SDK has 
supported the corresponding functions in order to develop the correct software and interface 
to ensure the communication with the device and the performance of the whole system. 

Considering rehabilitation applications, Kinect™ has been used before to assist in the 
recovery from physical and cognitive deficits after stroke (Alankus, Proffitt, Kelleher, & 
Engsberg, 2010; Chang, Chou, Wang, & Chen, 2012; Chang, Chen & Huang, 2011). 
Moreover, GestSure Technologies has developed an application to help doctors navigate 
MRIs and CAT scans during surgery; Jintronix has developed a software application that 
allows patients with recovering from stroke to perform physical therapy exercises from within 
their own home; and the Johns Hopkins University uses Kinect™ and gesture based tele-
surgery to help in fine and precise manipulation of surgical tools while conducting surgeries. 

TUM and UPM-ROMIN have recently conducted a study that analyzes kinematic data 
obtained from the Kinect during the performance of an ADL (i.e. making a cup of tea), and 
compared it to data collected at a higher sampling rate from an ultrasonic motion capture 
system. In the following sections we provide more specific information about the 
components, software architecture, and general data processing steps required by the 
Kinect™. 

3.1 Kinect™ components 

Kinect™ (Figure 1) provides two RGB cameras, a depth sensor, a multi-array microphone 
and an infrared projector which allow: 
• Full-body 3D motion capture 
• Facial recognition 
• Voice recognition 
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 (a)      (b) 
 

Figure 1. (a) A photo showing all the different parts of the sensor, 
external view of the 3D depth sensors, RGB camera, multi – array 

microphone, and a motorized tilt taken at Microsoft's E3 2010. (b) Internal 
view of the device 

 

The RGB cameras are used for getting a colour image of the workplace and the infrared to 
obtain information about the depth of the different elements involved in the task. The method 
of determining 3D position for a given object or hand in the scene is described by the 
inventors as a triangulation process (Freedman, Shpunt, Machline, & Arieli, 2010). 
Essentially, a single infrared beam is split by refraction after exiting a carefully developed 
lens. This refraction creates a point cloud on an object that is then transmitted back to a 
receiver on the assembly.  

Using complex built-in firmware, Kinect™ can determine the three-dimensional position of 
objects and hands in its line-of-sight by this process. The main advantage of this assembly is 
that it allows 3D registration without a complex set-up of multiple cameras and at a much 
lower cost than traditional motion labs and robotic vision apparatuses. Figure 2 provides the 
relevant information about Kinect™ features:  
 

 

Figure 2. Kinect TM principal features for capturing image video and 
motion   
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3.2 Kinect™ software architecture 

Figure 3 shows a block diagram representing the whole process from the data acquisition 
from Kinect™ to the plot and analysis of the signal: 

 

 

Figure 3. Modular methodology used for data analysis  
 
First of all, a user interface (Figure 4) has been designed in order to interact with Kinect™ 
and make the acquisition of the data easier. This interface lets the user choose between 
different options related to the mode in which Kinect™ records the information from the 
cameras. One of the advantages of selecting the mode is that the user can customize the 
video image. Instead of recording the whole body, Kinect™ can record only the data from the 
upper half of the body. This feature is pertinent to the CogWatch system, which requires 
information obtained strictly from hand movements during ADL performance. 
 

 

Figure 4. Kinect ™ user interface 
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Besides the different images from the whole scenario, another functionality provided by the 
interface is the possibility of visualizing in real time the x, y, z positions of the hand (a fixed 
point in the wrist). The interface, which has been programmed using C++ in Microsoft Visual 
Studio, has implemented a final option of saving all the position data in a file with a specific 
format selected by the user. The most common file formats used during the experiments are 
.xls and .csv. 

Secondly, once all the data is saved, all the data is post-processed by loading the files saved 
before using Matlab in order to plot the signals and study if any filtering is needed. As shown 
in the following section, filtering has been focused on Butterworth. A Butterworth filter is 
applied to obtain maximum flatness in the band pass. For this article, it is applied in its digital 
version that is an infinite response filter (IRF). The Butterworth filter provides the best Taylor 
Series approximation to the ideal low-pass filter response at analog frequencies fr = 0 and fr = 
∞. In this case, no stability problems are found in the domain of the input data. 

After filtering the signal, Kinect™ data is compared with the data obtained from Zebris, and 
used to determine whether the Kinect™ can recognize handmade movements, and if it is a 
suitable motion capture system for cognitive rehabilitation. 

3.3 Validation of Kinect™ 

Given that traditional marker-based kinematic systems are relatively expensive, they are not 
an appropriate choice for the CogWatch system. TUM and UPM are involved in a 
collaborative project to determine whether the Kinect™ can recognize handmade 
movements, and if it is a suitable motion capture system for cognitive rehabilitation.  

3.3.1 Task and Procedure  

In order to test the suitability of the KinectTM device as a motion capture system we collected 
data from a neurologically healthy 32 year-old female, and a 47 year-old female with apraxia. 
Both participants were right handed. The apraxia patient had left-brain damage which 
resulted in hemiparesis of the dominant right hand. As such the apraxia patient had the use 
of the non-dominant left hand only. Given that the apraxia patient was hemiparetic, the 
control participant was also required to use only the left hand to perform the task. The 
instructions emphasized that the task must be performed at a normal pace. The participant 
performed a total of 20 tea-making trials. The entire session took 30 minutes. 

The sequence of actions and apparatus is identical to that used to develop KARA (section 
2.2.1). Kinematic data was collected by a Kinect sensor with a 30 Hz sampling frequency, 
and an ultrasonic motion capture system (Zebris) at 120 Hz.  

3.3.2 Data Analysis  

In the first step of data analysis, the kinematic data was loaded into a custom written MatLab 
program (The MathWorks®, Version R2010a), and the 3D coordinates were low-pass filtered 
at a 5 Hz cut- off, using a first order Butterworth filter. The data was also filtered using an 
IRF, which was selected because it reduced the amount of delay in the signal, and it is 
known to be more computational efficiency than a finite response filter. This low-pass filter 
adequately smoothed the signal, rejected movement artefacts and high frequency 
phenomena (e.g., aliasing), and eliminated power line harmonic interferences. Figure 5 
shows the signal before (blue signal) and after (red signal) filtering Kinect data: 
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Figure 5. Filtering of Kinect ™ data 
 

In the next step, the Zebris data was then down-sampled to 30 Hz and then normalized by 
computing standardized z-scores using the mean and standard deviation of the vector for 
each axes (transverse, sagittal, coronal). This procedure allowed the comparison of the 
obtained data from the two motion capture systems to be done directly. The difference 
between KinectTM and Zebris data were quantified utilizing Mean Square Error (MSE) and 
cross-correlation measures separately for each axes. 

MSE was computed using the matlab mean squared normalized error performance (mse) 
function, which measures the expected squared distance between an estimator (Zebris) and 
the observations (KinectTM). Because the signals from the KinectTM and Zebris have different 
units, MSE analysis was conducted on the normalized data (mean = 0, SD = 1). As such, the 
reported MSE values in Figure 6 are dimensionless. That said, MSE values can be 
interpreted in a qualitative fashion, such that a MSE of 0 means the estimator (Zebris) 
predicts observations (KinectTM) with perfect precision. In contrast, larger MSE values 
indicate that the observation values (KinectTM) differed from the estimator (Zebris). 

Cross-correlations were computed by using the Matlab corrcoef function, and that function 
was used to estimate the dependence of the values obtained from the two motion capture 
systems. The correlation coefficient ranges from -1 to 1. A value of 1 implies that a linear 
equation describes the relationship between the Zebris and Kinect™ perfectly. Small values 
or a value of 0 implies that there is no linear correlation between the variables. Negative 
values indicate an inverse relationship between the variables (i.e., the values of one of the 
variables increase, the values of the second variable decrease).  

3.3.3 Results  
Hand position for each axes for the control participant and apraxic individual are displayed in 
Figure 6. It was observed that KinectTM (blue signal) was able to adequate track 3D hand 
positions, and was similar to that collected by a marker-based ultrasonic motion capture 
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system Zebris (green signal). The average MSE and cross-correlation values for each axis 
are displayed in Table 3. 
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Figure 6. Comparison of position data for the Kinect ™ (blue lines) and 
the Zebris system (green lines) from a single tea making task trial for the 

control participant (top graph) and the apraxia patient (bottom graph) 
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In general, average MSE values for the control participant ranged from 0.938 to 1.143. The 
MSE values for the apraxic individual were slightly higher, ranging from 1.265 to 1.322. 
Statistical analysis indicated that MSE values for the control participant and apraxic patient 
were significantly different from one another, F(1,19) = 10.017, p = 0.005. This difference 
was primarily driven by the MSE values in the sagittal axes, which were lower for the control 
participant than the apraxic patient, F(1,19) = 4.478, p = 0.018. 

These results indicate that the overall observation (KinectTM) and estimator values (Zebris) 
were similar to one another (p > 0.05) regardless of axes, and that the obtained data from the 
KinectTM and Zebris motion capture systems were similar regardless of the neurological 
status of the participant for the transverse and coronal axes, but were significantly different 
from another in the sagittal axes. 

 

Table 3. Mean Square Error (MSE) and cross-correlation values for the 
transverse, sagittal, and coronal axes 

 

 Mean square error (MSE) Cross – correlation 

 Transverse Sagittal Coronal Transverse Sagittal Coronal 

Control 1.143 
(0.454) 

0.938 
(0.417) 

1.074 
(0.453) 

0.427 
(0.114) 

0.489 
(0.137) 

0.525 
(0.075) 

Apraxic 1.265 
(0.343) 

1.322 
(0.224) 

1.292 
(0.306) 

0.367 
(0.172) 

0.338 
(0.112) 

0.353 
(0.153) 

 
Cross-correlation analysis indicated that the relationship between the KinectTM and Zebris 
systems ranged from 0.427 to 0.525 for the control participant. Based on the Cohen 
scale(Cohen, 1988), these results indicate a medium correlation between motion capture 
systems for the transverse and sagittal axes, and a strong correlation between motion 
capture systems for the coronal axis. The cross-correlations for the apraxic patient ranged 
between 0.338 and 0.367, indicating a moderate correlation between the tested motion 
capture systems for all three axes. Statistical analysis indicated that the cross-correlations 
were similar between the control participant and the apraxic patient [F(1,19) = 0.923, p = 
0.349] and across all three axes [F(1,19) = 2.089, p = 0.138].  

 

3.4 Summary and outlook 

Overall, the results indicated a moderate to strong correlation between signals in the control 
participant, and moderate correlations between signals in the apraxia patient. Furthermore, 
although the sagittal axes MSE values differed between the control participant and apraxia 
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patient, the transverse and coronal axes MSE values were similar for both participants. 
Taken together, the research presented indicates that the KinectTM device is able to 
adequately track hand movement during an ADL, regardless of the neurological status of the 
individual. These findings are indeed promising given that the sampling frame of the KinectTM 
device is lower than the Zebris system (30 Hz compared to 120 Hz), the position of the hand 
is determined using RGB cameras and a depth camera, and that the KinectTM sensor costs 
significantly less than its marker-based counterparts. 

As future work, more detailed experiments will involve multiple ADL tasks (e.g., making toast, 
putting on a shirt, etc.) and various AADS patient populations (e.g., left-brain damage, 
aphasic). Overall, while more researches could be done into the capabilities and limitations 
of the device in physical therapy, this work determined that Kinect™ has a high potential for 
use in stroke rehabilitation as a tool for both clinicians and stroke survivors.  
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4. SENSOR-BASED ACTION RECOGNITION 
The EECE group at UoB have been utilizing sensor technologies in order to detect the 
actions at the sub-goal level. The types of sensors include radio frequency identification 
(RFID) tags, accelerometers, force sensitive resistors (FSR), and force sensitive handles. 
The rationale for the choice of sensors was presented in detail in CogWatch deliverable 
D2.1.   

In preparation for prototype 1, researchers at UoB have focused their efforts on detecting 
sub-goals using CogWatch instrumented coasters (CIC) which can be attached to the base 
of a jug or cup. The CIC communicates with a host computer via Bluetooth, where its outputs 
are sampled at 200Hz and stored in a file.  A CIC data file comprises a sequence of six 
dimensional feature vectors, comprising x, y and z accelerometer values and the outputs of 
three force sensitive resistors (FSRs), produced 200 times per second. 

4.1 Tasks 

Naive participants performed four types of activity with the instrumented kettle: 

• “pour” – participants were asked to pour liquid from the kettle into a mug.  They were told 
that the kettle should be at rest on the desk surface at the start and end of the activity. 

• “toy” - participants were asked to move the kettle arbitrarily, whilst avoiding the “pour” 
activity.  Again they were told that the kettle should be at rest on the desk surface at the 
start and end of the activity. 

• “pour-toy” - participants were asked to pour liquid from the kettle into a mug and then to 
toy with the kettle.  They were told that the kettle should be at rest on the desk surface at 
the start and end of the activity.  This data was used only for testing the detector. 

• “rest” – participants were asked to leave the kettle at rest on the desk top. 

A total of 96 files were recorded.  These were partitioned into a training set of 63 files and a 
test set of 33 files.  For each data file a label file was created indicating the sequence of 
actions represented by the data.  No timing information was included in the label file. 

4.2 Visualization of the data 

Figure 7 shows CIC data for an example of the “pour” activity lasting approximately 9.75s.  
The times at which the jug is raised and replaced on the surface are evident from the FSR 
graphs in the figure.  Before the lift the three FSRs have different values, due, presumably, to 
the characteristics of the individual FSRs and the precise orientation of the mug.  However, 
after the lift all of the FSRs give a consistent value of approximately 4100 until the jug is put 
down again after approximately 1200 samples.  The FSRs then take between 200 and 800 
samples to return, approximately, to their original values.  

The accelerometer values are more difficult to interpret and appear to be noisier than the 
FSR values when the jug is at rest.  The third accelerometer reading (acc 3) corresponds to 
the vertical axis (assuming that the cup is upright), therefore it is measuring the effect of 
gravity as 1g accelerating upwards.  When the mug is tipped most of the structure in the 
accelerometer graphs is the gravity component moving across the axes. The gravity 
component across the three axes always adds up to 1g but it is quite hard to distinguish 
between the effects of gravity and more general motion when the item is rotated. 
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Figure 7. CIC outputs for an example of the "pour" activity lasting 
approximately 9.75 seconds  

 

4.3 Data Analysis 

All experiments were conducted using the Cambridge University Engineering Department’s 
Hidden Markov Model (HMM) Toolkit, HTK (Young et al., 2006), which is the de facto 
standard for offline experiments in HMM based automatic speech recognition. 

4.3.1 HMM parameter estimation  

Basic HMM parameters, such as the number of states, the number of components in the 
Gaussian Mixture Model (GMM) state output probability density functions (PDFs), and the 
structure of the initial state probability vector and state transition probability matrix, are 
chosen manually.  Once these have been set, the remaining parameters are estimated from 
data. 

The “pour” activity was modelled as a 9 state left-right HMM.  This was chosen to try to 
capture the sequential structure of the “pour” action.  Intuitively, the ‘segments’ of the “pour” 
activity are (1) the jug at rest, (2) the jug is raised, (3) the jug is moved, (4) the jug is tipped, 
(5) the jug is moved, (6) the jug is lowered, and (7) the jug is at rest.  Two additional states 
were included to obtain a better piecewise constant approximation to the complex tipping 
movement.  Only transitions from a state to itself or the next state were permitted, to 
reinforce the sequential structure of the activity.  Initially, each state of the “pour” HMM was 
associated with a single Gaussian PDF. 

The “toy” and “rest” actions were modelled as single state HMMs with multiple- component 
GMM state output PDF.  For example, it was envisaged that different GMM components 
would capture different positions of the object during toying. 
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4.3.2 HMM model optimization  

Initialisation was implemented using the HInit tool in HTK (Young et al., 2006).  All states are 
first associated with single Gaussian state output PDFs.  Each training file is segmented 
uniformly into N segments, where N is the number of states in the corresponding model (thus 
N=9 for “pour” and N=1 for “toy” and “rest”).  The (vector) means and variances of these 
segments were chosen as the initial mean and variance of the multivariate Gaussian PDFs 
associated with the corresponding state. These initial HMM parameters were refined using 
10 iterations of the Baum-Welch maximum likelihood (ML) optimisation algorithm (using the 
HTK tool HERest). 

Two approaches to increasing the number of GMM components in the models were tested.  
These are described in full in D3.3.1.  The most successful approach was as follows:  For the 
“pour” model, each state output PDF was split into two PDFs along its direction of maximum 
variation using the HTK HHed tool, and a further 5 iterations of Baum-Welch training were 
applied.  For the “toy” and “rest” models the same splitting technique was used separately to 
produce single state HMMs with 2, 4, 8, 16, 32 and 64 component GMM state output PDFs.  
In all cases a further 5 iterations of Baum-Welch parameter optimisation were applied. 

4.3.1 Activity detection  

The ‘recognition grammar’ ( 

 

 

 

8) is designed to set up a competition between the “pour”, “toy” and “rest” models, in terms of 
which one can provide the best explanation of the data at any point.  During recognition, 
each of the solid square boxes is replaced by the corresponding HMM.  Given a sequence of 
test vectors o corresponding to a particular movement of the jug, the recognition algorithm 
(known as the Viterbi decoder) finds the sequence of states s such that the joint probability of 
o and s is maximised.  From this state sequence the optimal explanation of the data as a 
sequence of “pour”, “toy” and “rest” activities can be recovered. 

 

 

 

 

 

 

 

 

 

Figure 8. Recognition network for “pour” detection 
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4.4 Results 

4.4.1 Activity recognition using the “raw” CIC data  

Activity recognition accuracy using the raw data from the CIC is very poor.  The prime cause 
is variability in the outputs of the FSRs in the CIC. It has already been observed that the 
values from FSRs are consistent (and approximately equal to 4096) when the jug is not 
resting on the surface, but variable when it is.  This causes most instances of “rest” to be 
recognized as “toy” and causes confusion between “pour” and “toy”.  Although misrecognition 
of “rest” as “toy” is not practically significant, it indicates serious problems with the 
recognition algorithm that need to be addressed. 

 

Figure 9. Activity detection results using thresholded FSR data 

 

4.4.2 Activity recognition using thresholded FSR data  

A simple solution to the variability in the outputs of the FSRs is to threshold their outputs so 
that values above 4000 are assigned the value 1, and those below 4000 are assigned 0.   
This is referred to as “thresholded FSR data”.  The results of experiments with thresholded 
FSR data are presented in 9.  The figure shows % accuracy and % correct as a function of 
the number of GMM components in the “toy” and “rest” HMMs.  These are defined as: 
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where N, S, D and I are the numbers of test samples, substitution errors, deletion errors and 
insertion errors, respectively.  These are computed from an alignment of the recognizer 
output and the true transcription, using the HTK tool HResults. The figure of 70% accuracy 
for 8 component GMM state output PDFs in the “toy” and “rest” models are the best results 
achieved to date. 

 

4.5 Discussion 
Although simple thresholding of the FSR outputs removes significant variability and improves 
recognition accuracy, it is not a good solution.  For example, an important additional cue for 
detecting “pouring” is the increase in weight of the mug that has milk poured into it.  
Calibration of the FSRs (deliverable D.2.3.1) has shown that the FSRs can detect weight 
changes of the order of 5 grams, which is less than the weight of milk that is typically added 
to a cup in tea making.  However, this change in FSR output is within the variability that is 
seen in the raw FSR outputs, and would be thresholded to the 0 value corresponding to the 
mug resting on a surface.   

A more satisfactory solution would be to use the derivatives of the FSR outputs.  These 
should be equal to 0 when the mug is at rest (either on the surface or lifted above the 
surface) but adding milk to the mug should result in positive derivatives.  However, because 
the FSR outputs are noisy, either the derivatives need to be estimated over a long interval or 
the FSR data needs to be low-pass filtered before the derivatives are computed.  The latter is 
a more satisfactory solution. 

Another issue with the FSR data is whether a more stable output could be produced by 
averaging the values from the three FSRs.  This is not entirely straightforward because the 
relationship between load and FSR output is non-linear.  However, once the FSRs have 
been calibrated (D.2.3.1) linearization of their outputs becomes possible. 

In addition, there is currently no pre-processing of the accelerometer outputs.  While the z 
axis accelerometer data is important in detecting raising and lowering of the jug, the direction 
information in the x and y axis accelerometer is not currently being used explicitly and may 
be noise if the relative positions of the jug and mug vary. 

Moving away from the CIC data, another issue is that the “toy” data may represent more 
“extreme toying” than one would expect to observe in practice, especially if movements of 
the jug are restricted because it contains liquid.  It is possible that some of the “toy” / “pour” 
confusions arise because the “toy” data includes activity that is very close to “pouring”. 

 
4.6 Summary and outlook 
In summary, the result of the experiment to detect the “pour” activity presented here are 
encouraging.  However, potential improvements to the CIC outputs and the difficulty of the 
current version of the task suggest that better performance may be achievable. The EECE 
group at UoB will continue to ameliorate these issues, as the activity recognition in prototype 
1 will be based primarily on the CIC data.  More detailed information of the experiments, as 
they pertain to predictive models, will be presented in the forthcoming D.3.3.1 deliverable. 
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5. VIDEO-BASED ACTION RECOGNITION 

To analyze error production and action sequencing in apraxia patients, the clinical screening 
and laboratory experiments are recorded by several video cameras.  The videos are then 
evaluated with respect to error production (e.g., using the wrong object for a given action, 
failing to turn on the kettle), and action sequencing. This information is then used to develop 
the Bayesian Logic Network (BLN) models that will be used in the second CogWatch 
prototype (T3.4).  

In addition, the video data will provide information about errors related to grasp selection. For 
example, neurologically healthy individuals will often grasp objects with an initially 
uncomfortable grasp posture if this affords control over the object during later stages of the 
movement (Rosenbaum et al. 1990). Extending this work, Randerath and colleagues 
(Randerath, Li, Goldenberg, & Hermsdörfer, 2009) found that the selection of grip type in 
apraxic individuals is impaired, and is influenced by task context. In general, nearly all 
patients (except for a few LBD patients) grasped the objects with grips that ensured end-
state control when asked to demonstrate how the tool is typically used. However, when 
asked to transport the tool to another location, participants selected end-state control 
compliant grasp postures in approximately 50% of trials. The importance of grasping objects 
should not be underestimated. Taking hold of a kettle with heated water with a grip that does 
not lead to end-state control might result in hot water being spilled over the table top and 
onto the patient. The CogWatch system should account for such issues, and provide 
appropriate feedback to the patient so that they can correct their movements.  

5.1 Action Sequencing and Error Recognition 

Given the deficits in action sequencing and the errors in the movement quality or space (see 
D1.2) in apraxic populations a model needs to be able to describe both low-level motor 
defects, (e.g., grasping an object with an inappropriate grip), and high-level errors (e.g., 
performing a task in a wrong sequence). Furthermore, there exists a great deal of freedom in 
how an ADL task can be performed, such that the same goal can be reached by significantly 
different action sequences. In these tasks, subsequent actions depend not only on the 
previous one, but on all actions that have already been performed, since they determine 
which other actions are still needed to complete the task at hand.  

The Bayesian Logic Network model developed by the Intelligent Autonomous Group (IAS) at 
the Technical University of Munich (TUM) is able to handle the high degree of variation often 
observed in ADL tasks (Tenorth, 2011). In general, BLNs are statistical relational models that 
combine the expressiveness of first-order logics, necessary to describe the complex 
interactions between actions and the parameters associated with these actions, with the 
representation of probability in a probabilistic logical language.  

From training data, partially-ordered models can learn which actions are relevant and which 
ordering relations are important, such that actions that occur in all observations of a task are 
considered more relevant than those that are only rarely observed, and ordering relations 
that consistently hold are also more likely to be important. Thus, the advantage of this 
approach is that the system learns a model that is able to describe complex tasks including 
their partial order from observed data. 
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5.2 Initial phase: Clinical screening 

Although a number of different tasks will be considered during the CogWatch project, the 
ADL scenario chosen for the clinical screening phase is a two tea-making task.  This task 
requires that the patient make one cup of tea with milk and two sweeteners, and another cup 
of tea with a lemon slice and one sugar cube. The results of the clinical screening study will 
be compared with data obtained from young healthy adults and elderly control participants. 
The data was analyzed with respect to error production and action sequencing, which will be 
used to develop the Bayesian Logic Network (BLN) models that will be used in the second 
CogWatch prototype (T3.4).  

5.2.1 ADL Scenario: The two tea-making task  

The main ADL scenario for the clinical screening phase is a two tea-making task. This task 
was chosen because it is highly relevant to everyday life, should be familiar to the majority of 
participants, and is sufficiently complex to ensure the inclusion of a substantial number of 
apraxic patients, and also enables analysis about the selectivity of the effects of apraxia. Tea 
making has also been thoroughly studied in the literature, and thus provide a basis from 
which we can compare our results. Figure 10 shows a hierarchical tree based description of 
the task.   

Six patients (age = 55.83 y, SD = 14.17, 4 men, 2 women) with lesions following a single 
cerebrovascular accident (CVA) participated in the study. There were 2 left-handed and 4 
right-handed patients. Six healthy participants served as the control group (age = 35.50 y, 
SD = 9.18, 2 men, 4 women). None of the control participants had any history of neurological 
disorders or any constraints of upper limb movements. Five control participants were right-
handed, and one control participant was left-handed. 
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 Figure 10. Hierarchical tree representation of the two tea-making task 
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Participants sat at a table with a dimension of 100 cm x 60 cm. The spatial arrangement of 
the objects on the table is shown in Figure 11, with a total of 14 objects located on the work 
surface. Each participant was asked to perform a 2 cup tea-making task, in which one cup of 
tea required milk and two sweeteners, and the other cup of tea required lemon and one 
sugar cube. Participants were informed that all the things required to make the tea are on the 
table, and that they were to inform the experimenter if they required help stabilizing an 
object. Two trials were performed. Actions were recorded by a video camera (Panasonic 
HDC-SD909) located 45° to the right side of the table.  

 

 
 

Figure 11. Spatial layout of objects for the two tea-making task 
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5.2.2 Results  

5.2.2.1 Error Types and their frequency 

Control participants successfully completed the task in 75% of trials (total 3 errors made in 
three trials). All three errors were considered to be substitution errors, where the participant 
added two sugar cubes to cup2 and one sweetener to cup1 (33% of errors), or added two 
sugar cubes of sugar to cup2 and one sugar cube to cup1 (67% of errors).  

Figure 12 shows the proportions of errors during the tea making task for apraxic patients. 
Apraxia patients committed errors in 46% of trials, with a total of 35 errors recorded. Patients 
also committed an error in at least one trial; with the number of errors per trials ranging from 
0 - 5 (mean = 2.0, SD = 1.5). The most frequently occurring error was that of omission (51% 
of errors) with patients failing to pour water from the jug into the kettle, put tea bags into one 
or both cups, or adding sweetener to the cup that required it. 

 

 

Figure 12. The distribution of errors by error type during the two tea-
making task 

 
Patients produced addition and substitution errors in 17% and 14% of trials, respectively. 
Examples of addition errors include adding coffee to a cup of tea, or putting sugar or lemon 
into the cup that did not require it. There were also a small number of trials in which patients 
committed mislocation, anticipation, and quality errors (6% each). In these trials, apraxia 
patients failed to open the packet of sweetener before pouring the contents into the cup 
(mislocation errors), added coffee into a cup instead of a tea bag (substitution errors), or 
failed to pour enough water into the kettle to fill two cups of tea (quality errors). 
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Lastly, the presence of distractor objects on the workspace (i.e., jar of coffee, dessert spoon, 
fork) did not impact the quality of performance. Out of the six apraxia patients tested, only 
two patients committed an error involving a distractor object (i.e., coffee into a cup instead of 
a tea bag). This finding is counter to previous research (Moores et al., 2003; Schwartz et al. 
1998) suggesting that semantically related distractors compete for selection with appropriate 
target objects for action. More detailed analysis on a larger group of apraxia patients is 
needed to ascertain how distractors influence action sequencing and error production during 
ADL performance.  

In sum, the error production results are consistent with previous research (Buxbaum et al 
1998; Schwartz et al 1998) demonstrating that omission errors are the most commonly 
committed type of error during ADL. In addition, errors did not appear to be related to the 
laterality of lesion, hemiparesis, or aphasia type. Future research into error production in 
apraxic populations will continue to examine this issue in order to ascertain the variables that 
correlate to error production. Further, the data obtained from the clinical studies will be used 
to develop the TMs for prototype 2.   

5.2.2.2 Modeling action sequencing and error production 

Figure 13 depicts the conditional probabilities inside the precedes-node of the BLN. The 
visualizations contain all nodes that have a probability of at least 0.002. The ellipse 
dimensions are proportional to the node's probability, the thickness of the edges is 
proportional to the conditional probability of the target given the origin times the probabilities 
of the target and origin nodes. In order to improve clarity, the redundant relations between 
actions have been pruned. For example, in instances in which action A always precedes 
action B (probability = 1) the edge A – B was not drawn.  

As can be seen, the algorithm is able to successfully recover the partial-order structure from 
the data obtained from both healthy and patient populations. The results of the BLN 
approach indicate that the relevance of the nodes (i.e., actions) is different between the two 
groups, indicated by the different sizes. There are more nodes in the patient group, which 
were caused by addition or substitution errors or by alternative ways of solving the task using 
a different set of tools. Apraxic patients were more consistent in some relational orderings, 
typically pouring the water into both cups before adding the ingredients (sugar, sweetener, 
lemon, milk), which can be seen by the very bold arrows between some of the actions. In 
comparison, control participants added the ingredients before pouring water into the cups 
(indicative of a strong ordering relation), but the order in which the ingredients were added 
was not consistent (i.e., weak ordering relation). This can be seen from the comparatively 
strong ordering relations between the action groups (e.g. from adding the tea bag to adding 
sugar or sweetener), compared to much weaker relations between actions (e.g., adding 
sugar or sweetener). 
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Figure 13. Learned dependencies in six healthy contr ols (left) and eleven apraxia patients (right) 
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6. ACTION RECOGNITION DATA ANALYSIS OUTLOOK 

In the laboratory study phase, more detailed analysis of ADL performance will be obtained 
from healthy young adults, healthy elderly individuals, and AADS patients. In this section, we 
outline how potential participants are identified and recruited, the new TUM CogWatch 
Laboratory, and the four ADL tasks used to develop the action recognition and prediction 
models for prototype 2. 

6.1 Laboratory Facilities 

The studies will take place in the CogWatch laboratory of the Lehrstuhl für 
Bewegungswissenschaft, Fakultät für Sport- und Gesundheitswissenschaft at TUM (see 
Figure 14 for a layout of the CogWatch laboratory). The aim of the CogWatch Laboratory is 
to provide an environment that closely replicates a familiar environment of the AADS patients 
and control participants. With this in mind, the data collection station is located behind the 
kitchen set up, and all equipment is out of plain sight during the experiment.   

The TUM CogWatch Laboratory is outfitted with an adjustable kitchen environment. The 
kitchen set up is designed so that it replicates a standard kitchen, but is complies with the 
American Disability Association (ADA) standards for the needs of individuals who are bound 
to wheel chairs. The Kitchen set up features a fully functioning basin and sink, two height-
adjustable wall shelves, and a height-adjustable kitchen preparation area. 

In order to capture the necessary data, a metal cage is attached in the room (not shown) that 
spans the outside area of the kitchen set up. The cage is used to mount the five high speed 
Flea cameras (Flea3 FL3-U3, Point Grey Research Inc, Richmond, BC. Canada) and the 
Zebris motion capture system. In addition, the Kinect™ motion capture sensor is located at 
the front of the kitchen set up, and provides an unobstructed view of the food and drink 
preparation area. If required, a second Kinect™ system can be attached to the cage in order 
to collect data from the sink and shelf area.  
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Figure 14. Illustration of the TUM CogWatch Laboratory used to test the 
four ADL scenarios. A-B) Birds eye view of the lab plan. C) 3D 
perspective depicting the kitchen set up (right side) and the 

experimenter work station (back left side) 

6.2 ADL Scenarios  

There are four different scenarios where the patient will execute the four ADL tasks preparing 
a cup of tea, preparing a jam on toast, teeth brushing, and dressing. These four tasks were 
chosen because they comprise basic care ADL, and they feature a number of actions steps 
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directed at a distinct end goal. Furthermore, they have been studied by previous researchers, 
which provide a basis with which the results can be compared.  

These tasks are divided into component subtasks using the hierarchical task analysis 
approach employed in human factors. The following sections summarize the manipulated 
objects, distracter objects (when required), and the location of the objects. Each section ends 
with a description of the instructions and experimental procedure.    

6.2.1 The tea-making task  

The first task is focused on the preparation of tea, with additional possibilities of adding sugar 
and milk that can be specified by the patient prior to movement initiation. As introduced in the 
first deliverable (D.1.1), the task consists of several sub-tasks and basic actions. The tea-
making task is the chosen scenario for the first CogWatch prototype 1. Figure 15 shows a 
hierarchical tree based description of the task.   

6.2.1.1 Assumptions 

Pilot testing has indicated a substantial number of individual differences in tea preparation. 
For this reason, the task is to be performed in a controlled environment, with the following 
assumptions having been made:  

• Water is inside a water jug 

• The kettle is already plugged in 

• Five tea bags are located in a specific box, placed on the table 

• All objects are located within reaching distance on the table top, and the start location 
of the objects is standard across participants 

• The tea bag must be removed from the cup in order for the task to be completed. 
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Figure 15. Task tree for tea preparation. Shown is t he task tree for tea preparation without milk or sugar. For 
tasks that involve milk and/or sugar, the trees “add milk” and/or “add sugar” will be components of the task tree 
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6.2.1.2 Objects involved in the task 

The kitchen environment consists of many objects that may or may not be necessary for the 
task at hand. For the tea-making task, we have classified the manipulated objects into those 
that are necessary, and those that are distractors.  

The necessary objects for successful task completion are:  

• A jug that contains water 

• A kettle 

• Two cups 

• A sugar jar 

• A milk jug 

• Two teaspoons 

• A tea bag container 

• Five tea bags.  

Distractor objects include:  

• A knife 

• A fork 

• A dessert spoon 

• A cereal bowl.  

 

6.2.2 Toast making task  

Meal preparation is a basic ADL that individuals perform at least once per day. Successful 
meal preparation performance is not only necessary for fundamental functioning, but also 
allows an individual to be more independent in their environment. The meal preparation ADL 
scenario chosen for further testing is a toast making task (see D1.1). The task description in 
tree form is shown in Figure 16.  
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Figure 16. Task tree for toast preparation
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6.2.2.1 Assumptions 

• Prior to the experiment, participants will indicate whether they would use white or 
whole wheat bread when eating jam. This bread preference will be used in the actual 
experiment. 

• If participants do not eat jam on toast, or are unfamiliar with the task, the spread 
ingredient can be substituted to another. For example, Nutella is a common spread 
ingredient in Germany, whereas Marmite is a common spread ingredient in the U.K., 
New Zealand and Australia. 

• For participants with right hand hemiparesis, the toaster will be located on the right 
side of the set up. The set up will be reversed for those who do not have hemiparesis, 
or have left brain damage. 

• Participants are informed that the toaster is set to a medium toast level, but that they 
are allowed to change the toaster settings if they prefer. 

• The jam lid will be closed at the start of each trial. 

• The bread will be in a closed bread bag at the start of each trial. 

6.2.2.2 Objects involved in the task 
The necessary objects for successful task completion are:  

• A toaster 

• A loaf of bread 

• A jar of jam 

• A plate 

• A knife 

• A spoon.  

Distractor objects include 

• A cup 

• A sugar jar 

• A milk jug. 

6.2.3 Brushing teeth  

One of the aims of the health practitioner and therapist is to improve the ability of apraxic 
individuals to successfully perform tasks of personal hygiene. ADLs in this category include 
bathing, hair brushing, teeth brushing and shaving. Due to practical and safety issues, we 
have chosen a teeth brushing task to assess ADL personal hygiene and grooming.  The task 
description in tree form is shown in Figure 17. 
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6.2.3.1 Assumptions 

• Various tooth paste flavours (fresh mint, pepper mint, cinnamon) and sensitivity relief 
tooth pastes will be provided. Participant will select the tooth paste they prefer prior to 
the experiment 

• Tooth paste will have a screw cap lid 

• Participants will have completed a survey indicating their teeth brushing (step 4) 
regiment 

• The hand towel will be located on a railing next to the wash basin 

• In the situation where participants wear dentures, participants will be asked to 
perform a denture care routine. As such, appropriate denture products will be 
available to the participant 

6.2.3.2 Objects involved in the task 
The necessary objects for successful task completion are:  

• A toothbrush 

• Toothpaste  

• A sink and faucet 

• A water glass  

• A mirror 

• A facecloth/hand towel 

Distractor objects include:  

• A comb  

• A bar of soap 

• A box of tissue (Kleenex) 

• A hairbrush  
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0

Brushing teeth

4

Brush teeth

4.4

Brush bottom front 

teeth 10 times

4.5

Brush bottom left 

teeth 10 times

4.6

Brush bottom right 

teeth 10 times

4.1

Brush top front 

teeth 10 times

4.2

Brush top left teeth 

10 times

4.3

Brush top right 

teeth 10 times

4.7

Spit paste into basin

7

Clean up mouth

7.3

Turn off faucet

7.4

Wipe mouth with 

hand towel

6

Put away tooth 

brush

6.1

Place tooth brush 

back in holder

3

Put tooth paste on 

tooth brush

3.4

Squeeze tooth paste 

onto brush

3.3

Transport to 

position over tooth 

brush

5

Rinse tooth brush

5.2

Place tooth brush 

under faucet

5.1

Turn on water 

faucet

2

Select tooth brush

2.2

Reach and grasp 

tooth brush from 

holder

1

Select tooth paste

1.3

Place cap on basin

1.1

Reach and grasp 

tooth paste from 

holder

1.2

Remove cap from 

tooth paste

3.5

Place cap back onto 

tooth paste

7.1

Fill cup with water

7.2

Rinse mouth

7.1.1

Reach and grasp cup

7.1.2

Transport cup to 

position under 

faucet

7.1.3

Fill cup with water

7.2.1

Sip water from cup

7.2.2

Gargle water

7.2.3

Spit water into basin

7.3.1

Reach for handle

7.3.2

Turn handle until 

water stops

7.4.1

Reach and grasp 

hand towel from rail

7.4.2

Wipe mouth and 

hand with towel

7.4.3

Place towel back on 

rail

5.1.1

Reach for handle

5.1.2

Turn handle until 

water starts

 

Figure 17. Task tree for teeth brushing
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6.2.4 Dressing  

Dressing is one of the more complex skills which requires many sequential movements and 
involves both gross and fine motor control, eye-hand coordination, and balance. It is 
apparent that even if the task involves putting on a loose-fitting pullover sweat shirt, there are 
a great number of sequential actions that are required. Part of the CogWatch system 
consists of wearable devices (e.g., textiles, motion trackers) that acquire multi-parametric 
behavioural (e.g. grip force, hand configuration, position and movement, body posture, 
position and movement) and physiological (e.g., heart rate, blood pressure) data. As such, 
one of the ADL scenarios will involve a simple dressing task that utilizes the technology 
developed by RGB. The task description in tree form is shown in Figure 18.  

 

 

Figure 18. Task tree for dressing. Shown is an example of putting on a 
Velcro shirt 

6.2.4.1 Assumptions 

Due to compromised fine motor skills, the clothes chosen for the dressing task should be 
designed with ease of dressing in mind. Clothing choices should consider patients with 
lowered mobility, hemiparesis, and wheelchair dependent individuals who have difficulty or 
are unable to weight-bear. As such, the following assumptions have been considered: 

• Velcro brand fasteners or easy touch closures will be used instead of buttons or 
zippers 

• Elasticized waistbands will be used, as these will make it easy to pull on garments 
when challenged by hemiparesis or lowered hand dexterity 
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• Adaptive clothing should utilize front or side opening styles to facilitate assisted 
dressing 

6.2.4.2 Objects involved in the task 
The necessary objects for successful task completion include:  

• A wardrobe  

• Clothes on hangers  

• Empty clothes hangers 

Distractor objects include:  

• A tie  

• A pair of pants 

• A pair of shoes 

• An iron 

6.3 Data collection 

The data collection procedures are identical to those used in the Initial Phase: Clinical 
Screening experiments. Specifically, the experiments will be recorded by several video 
cameras in order to reconstruct the surface of the human as well as the joint angles. These 
measures allow for detailed, fine-grained analysis of human motions and for a comparison 
with previous executions of similar actions. These descriptions also provide temporal and 
spatial information about task performance (e.g., different action sequences or wrong objects 
used for a given action). The sequencing of actions will be used to develop the HTA models 
and BLN models used in prototype 1 and 2, respectively.  

ADL performance will be segmented into subtasks (or action segments), and the movement 
time for each AS will be evaluated. This analysis might prove useful in classifying the degree 
of ADL performance impairment, as well as improvements over time.  

In addition, future experiments will use motion analyses to examine arm and object 
movements throughout each trial. Such measurements provide the basis for feeding back 
information about correct or incorrect use of a tool to the acting patient. The information can 
also be used to detect gradual deviations from prototypical tool use and provide instructions 
in order to achieve more adequate movements. Kinematic measurements will also be used 
to further develop and evaluate KARA in a number of ADL scenarios. 
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7. CONCLUSIONS 

This deliverable has outlined the technologies exploited to develop the CogWatch algorithms 
for action recognition and prediction. General information about each action recognition 
technology has been provided, and progress on the development and evaluation of each is 
detailed. 

The report is presented in four main sections, separated into the different exploited 
technologies. Section two begins with a review of Kinematic-based action recognition, and 
details previous research that has utilized kinematic technology in the context of performance 
quality in ADL. Section two concludes by presenting primarily data on a Kinematic-based 
Action Recognition Algorithm (KARA) developed by TUM, which will be able to predict action 
and errors from the motion capture data. This technology will be implements into CogWatch 
prototype 2. 

Section 3 discusses the use of the Microsoft Kinect™ sensor as a low-cost, easy-to-
implement action recognition system. When evaluated against a commercially available 
motion capture system (Zebris), the Kinect™ performed quite well, with the results indicating 
a moderate to strong correlation between signals in the control participant, and moderate 
correlations between signals in the apraxia patient. Furthermore, although the sagittal axes 
MSE values differed between the control participant and apraxia patient, the transverse and 
coronal axes MSE values were similar for both participants. In summary, these results 
suggest that the Kinect™ is a viable addition to the CogWatch system as a motion capture 
technology. Future work will evaluate the ability of the Kinect™ to be a useful motion capture 
system for KARA. 

Section 4 outlines the data collection, analysis, and results obtained from sensors located on 
the base of a tea kettle (CIC). This data has been modelled as a HMM, and suggests that the 
variability and low recognition accuracy issues apparent when modelling the raw CIC data 
can be resolved by simple thresholding of the FSR outputs. The EECE group at UoB will 
continue to ameliorate these issues, as the activity recognition in prototype 1 will be based 
primarily on the CIC data.  

Section 5 provided information regarding video-based experiments in apraxia patients and 
healthy controls during a two tea-making task. The data from 14 Apraxia patients has been 
analyzed, and we report results on error types, error frequencies, and action sequencing in 
ADL performance. This data has been modelled using Bayesian Logic Networks (see D3.1 
report on action recognition techniques), and will be integrated into the task models used in 
prototype 2.   

In section 5 we provide an outlook for data collection and analysis in the upcoming 12 
months, and introduce the tasks that will be used to evaluate prototype 2. The results of this 
work will be integrated into the Hierarchical Tree Analysis (HTA) and BLN modelling 
techniques used in the algorithms for the task models. 



Public 

 

 

 

Grant Agreement # 288912                      CogWatch – TUM – D3.2.1                               Page 47 of 48 

 

 

 

REFERENCES 

Alankus, G., Proffitt, R., Kelleher, C., & Engsberg, J. (2010). Stroke therapy through motion-based 

games: A case study. Proc. of ACM ASSETS’10. 

Bickerton, W. L., Samson, D., Williamson, J., & Humphreys, G. W. (2011). Separating forms of neglect 

using the Apples Test: validation and functional prediction in chronic and acute stroke. 

Neuropsychology, 25, 567-580. 

Buxbaum, L.J., Schwartz, M.F., & Montgomery, M.W. (1998). Ideational apraxia and naturalistic action. 

Cognitive Neuropsychology, 15, 617-643. 

Cappozzo, A., Della Croce, U., Leardini, A., & Chiari, L. (2004). Human movement analysis using 

stereophotogrammetry Part 1: theoretical background. Gait and Posture,  21, 186-196. 

Chang, Y.J., Chou, L.D., Wang, T.Y., & Chen, S.F. (2012). A Kinect-based Vocational Task Prompting 

System for Individuals with Cognitive Impairments. Personal and Ubiquitous Computing, DOI: 

10.1007/s00779-011-0498-6. 

Chang, Y.J., Chen, S.F., & Huang, J.D. (2011). A Kinect-based system for physical rehabilitation: a 

pilot study for young adults with motor disabilities, Research in Developmental Disabilities, 32, 

2566-2570. 

Chiari, L., Della Croce, U., Leardini, A., & Cappozz, A. (2004). Human movement analysis using 

stereophotogrammetry Part 2: Instrumental errors. Gait and Posture, 21, 197-211. 

Ferrigno, G., & Pedotti, A. (1985). Elite: A digital dedicated hardware system for movement analysis 

via real-time TV signal processing. IEEE Transactions on Biomedical Engineering, 32(11), 943-

950. 

Freedman B., Shpunt A., Machline M., & Arieli Y. (2010). Depth Mapping Using Projected Patterns. 

U.S. Patent 2010/0118123. 

Hermsdörfer, J., Hentze, S., & Goldenberg, G. (2006) Spatial and kinematic features of apraxic 

movement depend on the mode of execution. Neuropsychologia, 44, 1642-1652. 

Ladin, Z. (1995). Three-dimensional instrumentation. In P. Allard, I. A. F. Stokes & J. P. Blanchi (Eds.), 

Three-dimensional analysis of human movement (pp. 3-17). Champaigne, IL: Human Kinetics. 

McCrea, P.H., Eng, J.J., & Hodgson, A.J. (2002). Biomechanics of reaching: clinical implications for 

individuals with acquired brain injury. Disability and Rehabilitation, 24(10), 534-541. 

Moores, E., Laiti., L., & Chelazzi, L. (2003). Associative knowledge controls deployment of visual 

selective attention. Nature Neuroscience, 2, 182-189. 

Newell, K.M. & van Emmerik, R.E.A. (1989). The acquisition of coordination: Preliminary analysis of 

learning to write, Human Movement Science, 8, 17-32. 



Public 

 

 

 

Grant Agreement # 288912                      CogWatch – TUM – D3.2.1                               Page 48 of 48 

 

 

Overhoff, H. M., Lazovic, D., Liebing, M., & Macher, C. (2001). Total knee arthroplasty: coordinate 

system definition and planning based on 3-D ultrasound image volumes. Proc. 15th Int. Congr. 

Exhibit. Computer Assisted Radiology and Surgery (CARS), 1230, 292-299. 

Randerath,J., Li, Y., Goldenberg, G., & Hermsdörfer, J. (2009). Grasping tools: Effects of task and 

apraxia. Neuropsychologia, 47, 497-505. 

Rosenbaum, D.A., Marchak, F., Barnes, H.J., Vaughan, J., Slotta, J.D., & Jorgensen, M.J. (1990). 

Constraints for action selection: overhand versus underhand grips. In: Jeannerod M (ed) 

Attention and performance XIII. Motor representation and control. Lawrence Erlbaum, Hillsdale, 

pp 211–265. 

Rothi, L.J.G., & Heilman, K.M. (1997). Apraxia: The Neuropsychology of Action. East Sussex (UK): 

Psychology Press. 

Schwartz, M. F.,  Buxbaum, L. J.,  Montgomery, M. W., Fitzpatrick-DeSalme, E., Hart, T., Ferraro, M., 

Lee, S. S., & Branch-Coslett, H. (1998). Naturalistic action production following right hemisphere 

stroke. Neuropsychologia, 37(1), 51-66. 

Shumway-Cook A., Woollacott M. (2001) Motor Control: Theory and Practical Applications, Second 

Edition. Baltimore, MD: Lippincott Williams & Wilkins. 

Tenorth, M. (2011). Knowledge processing for automous robots. Unpublished doctoral dissertation, 

Technische Universität München, München, Deutschland. 

Thelen, E. (1995). Motor development: A new synthesis. American Psychologist, 50(2), 79-95. 

Vereijken, B., van Emmerik, R.E.A., Whiting, H.T.A., & Newell, K.M. (1992). Free(z)ing degrees of 

freedom in skill acquisition”, Journal of Motor Behavior, 24, 133-142. 

Whittle, M. W., (2002). Gait analysis: an introduction. 3rd edition. Oxford , Butterworth-Heinemann.  

Young, S., Evermann, G., Gales, M.J.F., Hain, T., Kershaw, D., Moore, G., Odell, J., Ollason, D., 

Povey, D., Valtchev, V., & Woodland, P. (2006).  The HTK book, version 3.4, Cambridge 

University Engineering Department. 


