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EXECUTIVE SUMMARY 

Automatic Activity Recognition (AAR) refers to technology for monitoring of a participant 
engaged in an activity for everyday living (ADL). The CogWatch AAR system should know 
the stage that the participant has reached, it should be able to estimate the likelihood of 
successful completion, and it should be able to synthesise useful cues and feedback to the 
participant to redirect action.  The CogWatch AAR system will monitor an activity using 
sensors attached to tools and objects, plus video-based estimates of the participant’s hand 
positions. 

This report discusses the issues that are relevant to the development of the CogWatch  
AAR system.  Its main purpose is to explain the rationale for the design of the first prototype 
system, which is to be operational in month 16 of the project.  The report is presented in 
four main sections, addressing the activity scenario, instrumentation, the task model, and 
activity recognition.   

The report begins with a review of the tea-making task chosen as the application for the first 
prototype (Section 2).  A hierarchical tree description of tea-making (taken from CogWatch 
D1.1) is a reference for the discussions of action recognition models and task models which 
follow.  The goal of ‘tea-making’, at the root of the hierarchical tree, is split into sub-goals 
(for example, ‘add water in the cup’), which in turn are described in terms of tasks. 

Section 3 discusses the instrumentation available to the prototype system.  This includes 
the CogWatch Instrumented Coaster (CIC) (an instrumented “mat” that can be fixed to the 
base of a mug or jug), RFID tags, and 3D hand location estimated using the Kinect system.  
The utility of these sensors for monitoring tea-making is discussed in Section 3.4.  The 
sensors will communicate with the AAR system wirelessly via Bluetooth.  The set of sensors 
that will be used in the prototype will be agreed between WP2 and WP3 in July 2012. 

Section 4 is an overview of the CogWatch AAR system, and Sections 5 and 6 describe its 
two main components, the task model (TM) and the action recogniser.   

The strengths and weaknesses of various candidate TMs are considered in Section 5.  
These include the psychological models proposed by Cooper and Shallice, and Botvinick 
and Plaut; the Hierarchical Task Analysis (HTA) model from Ergonomics, the automated 
probabilistic models of everyday activities (AM-EvAs) that are being developed at TUM, and 
Markov Decision Processes (MDPs) and Partially Observable MDPs (POMDPs). 

Section 6 discusses the pattern recognition component of the AAR system.  The task of 
AAR is to convert sequences of measurements from the sensors into estimates of the sub-
goals and tasks that the participant is performing.  Hidden Markov Models (HMMs) are 
chosen for this, because they are an appropriate technology for processing time-varying 
sequences of data and because many of the issues that arise in the context of the 
CogWatch application have already been addressed for HMMs in the context of automatic 
speech recognition (ASR). 

The final prototype specification is summarised in Section 7.  The prototype CogWatch TM 
will be based on MDPs, whose structure and parameters are determined using HTA.  Future 
TMs will be data-driven, based on either MDPs, POMDPs or AM-EvAs.  Activity recognition 
will be performed using sub-goal level HMMs, using multiple decoders configured as a set 
of parallel sub-goal detectors (late integration – sub-goal level fusion).  This architecture is 
novel from the perspective of ASR, and was chosen for its ability to cope with asynchronous 
overlapping sub-goals. 
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1. INTRODUCTION 

1.1 Activity recognition and prediction 

This is the first report from CogWatch Work Package 3 “Activity Recognition and Prediction”.  
WP3 involves two of the CogWatch partners, the University of Birmingham (UOB) and 
Technische Universität München (TUM).  Its objective is to establish techniques that will be 
used to map the raw measurements from the monitor devices developed in WP2 to a 
description of patient behaviour. The task will explore two approaches for action recognition: 
model based and pattern based recognition. 

Model based recognition refers to the use of psychological models (e.g., Cooper et al., 
2005) to provide a behavioural platform for the hierarchical labelling relating to tasks 
performed by the patients. For example, Cooper and colleagues (2005) suggested a model 
based on a hierarchy of schemas that are interconnected with object representations.  They 
state that explicit hierarchically organized and causally efficacious schema and goal 
representations are required to provide an adequate account of the flexibility of sequential 
behaviour in everyday life. Botvinick and Plaut (2004) and Botvinick and colleagues (2009) 
offered an alternative model based on recurrent connections within a network mapping from 
environmental inputs to actions in everyday tasks.  One of the main differences between the 
two approaches relates to the assumed relationship between actions that are performed; for 
Cooper and colleagues, actions occur in a sequence towards a goal (so there is always a 
teleological explanation for the ordering of actions), and for Botvinick, actions co-occur at 
specific points in time (some of these correlations could be related to a task sequence but 
this does not have to be the case). Both models will be considered in providing a theoretical 
framework for action recognition and new models will be developed. 

Pattern based recognition refers to the use of more direct methods from pattern recognition 
and signal processing. In this subtask we will define multilevel, hierarchical labelling 
conventions for the data. Labels might relate directly to individual sensors (e.g. force 
transducers, accelerometers, eye-trackers, body-motion trackers, etc), or they might 
correspond to the integration of multiple sensors (e.g. revealing the cognitive performance 
of the patient), or they might be task related (e.g. a convention for describing the various 
stages in preparing and eating breakfast, brushing teeth, or dressing). The hierarchical 
labelling will initially be manual, performed using labelling tools such as the AMIDA NITE 
XML tool.  The resulting labelled data will subsequently be used to train and evaluate 
alternative automatic systems. 

1.2 Objectives for months 1 to 16 

The most important immediate target for WP3 is MS5, the completion of the first action 
prediction model, in month 12, leading to the evaluation of the first CogWatch prototype 
system in month 16.  The main objective of this report is to define this model and explain the 
rationale for the choices that have been made. 

1.3 Interactions between the partners 

Figure 1 shows the interactions between Work Packages in the first 12 months of the 
CogWatch project, which are most important from the perspective of WP3. 



Confidential 

  

 

 

Grant Agreement # 288912       Cogwatch – UOB – D3.1                        Page 13 of 52 

 

 

 The CogWatch sensor recorder, developed under WP2, is software to record the 
outputs of the sensors (force sensitive resistors, accelerometers, body-motion trackers, 
RF-ID tags) attached to the task objects and the participant’s body as well as hand 
position information from Kinect during the execution of a task in the trials performed in 
WP1.  These outputs will be saved in files and used to train the AAR system. 

 Within WP2, UOB and UPM will jointly determine the precise set of sensors that will be 
available for the sensor recorder and the first prototype CogWatch system. 

 WP1 will conduct trials with healthy subjects and patients.  The outputs of the sensors 
will be recorded during these trials and provided to WP3, where they will be used to train 
and test model and pattern based action recognition systems.  

 Within WP3, UOB and TUM will collaborate on the development suitable Task Models. 

 WP1 will provide WP3 with a specification of the outputs that are required from the 
prototype CogWatch system, to enable useful feedback and cues to be provided to the 
participant. 

 WP2 and WP3 will collaborate on system integration, to ensure that components 
developed under WP3 will integrate properly into the CogWatch system. 

 

Figure 1: WP3 view of interactions between CogWatch Work Packages 

1.4 Proposed timetable for the report 

 First draft end April 

 Presentation at UPM meeting in Madrid, May 10/11 

 Completion mid May 

 Reviewed via UPM Quality management mid May 

 Copy editing end May 
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 Submitted to EU end May (well within 45 days of nominal deadline). 
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2. SCENARIO 

During the CogWatch project a number of different ADLs will be considered.  However, the 
application for the first prototype system is a simple tea-making task. 

2.1 The tea-making task 

The tea-making task, together with the rationale for choosing it as the task for the first 
CogWatch prototype system, are described fully in CogWatch deliverable D1.1 “Report on 
scenarios”.   Figure 2 shows a hierarchical tree based description of the task, taken from 
D1.1.   

 

 

Figure 2: Hierarchical tree representation of the tea making task (from D1.1 Report on 
scenarios) 
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2.1.1 Terminology 

In this report the following terminology is used to describe items in this hierarchical tree: 

 The goal corresponds to the root of the tree and is “prepare a cup of tea”.  The whole 
description is aimed at achieving the goal (which, therefore, can be defined in terms of 
completion) 

 The items at the next level of the tree, namely “heat water”, “add water to cup”, “put tea 
bag in the cup”, “remove the tea bag from the cup” and “take a sip of tea”, will be 
referred to as sub-goals. 

 The items at the third level of the tree, for example “fill the kettle”, “switch on the kettle” 
and “wait for boiling”, will be referred to as tasks. 

 The leaves of the tree, for example “grasp handle”, “push forward until water pouring”, 
“keep still until cup is full” and “tilt back the kettle”, will be referred to as sub-tasks. 

2.2 Strengths and limitations of hierarchical descriptions 

2.2.1 Utility of the hierarchical task description 

From the perspective of activity recognition, a diagram like Figure 2 is useful because by 
breaking the ADL down into its basic component actions it suggests how the action 
recognition model should be structured.  It also exposes relationships with other pattern 
classification problems.  For example, a similar hierarchical description is used in automatic 
speech recognition (ASR), where an application is described in terms of a grammar, the 
grammar is described in terms of words, and the words in terms of their phonetic 
pronunciations.  These parallels motivate the proposed application of hidden Markov 
models (HMMs) to action recognition described in Section 6 of this report. 

2.2.2 Limitations of the hierarchical description 

A significant limitation of the hierarchical description in Figure 2 is that it gives no indication 
of the sequential structure of the task.  For example, it does not specify whether the sub-
goals should be executed in parallel or in sequence, or more generally whether the time 
intervals over which sub-goals are executed can overlap or must be disjoint.  The same is 
true at the task and sub-task levels.  From a mathematical perspective the issue is whether, 
at the sub-goal, task or sub-task levels, an instantiation of the ADL should be thought of as 
a well-ordered set or a partially-ordered lattice. 

In the specific case of tea making, and assuming that only one participant is involved, a key 
issue is whether the participant tries to achieve the goal using one hand or both hands.  If 
only one hand is used then the sub-goals, tasks and sub-tasks will take place in sequence.  
However if both hands are used there is clearly an opportunity for overlap (for example, the 
participant may pick up the cup with one hand and a tea bag with the other). 

As substantial quantities of real data collected from healthy participants and patients 
executing the ADL become available, these issues will be resolved.  However in the short-
term (which includes the period up to the creation of the first prototype) it will be necessary 
to make assumptions. 
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2.2.3 Implications for activity recognition 

In summary, the choice of tea-making as the scenario for the first CogWatch prototype 
system has a number of implications.  First, the description of tea-making as a hierarchical 
tree facilitates the use of methods from other fields, such as ASR.  However, the sequential 
structure of the tea making activity, and in particular whether its components can be thought 
of as a well-ordered or partially-ordered set, has implications for the choice of architecture 
for the action recognition system.  These issues are discussed in more detail in Section 6, 
which discusses the proposed approach to action recognition. 
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3. INSTRUMENTATION 

The action recognition system will track a participant’s progress in achieving the goal by 
processing the outputs of sensors attached to the tools and objects involved, sensors 
attached to the participant’s body, and estimates of body position resulting from applying 
image processing to video data.  The set of potential sensors and the rationale for the 
choice of sensors is presented in detail in CogWatch deliverable D2.1.  The following text is 
based on D2.1 and is included here for completeness. 

3.1 Sensor technologies 

The sensors that are potentially available to the first prototype CogWatch include: 

3.1.1 Vision-based systems 

Vision-based hand position data estimated, for example using the Kinect system, 

3.1.2 Radio frequency identification (RFID) 

Radio frequency identification (RFID) technology can be used to wirelessly detect and 
identify objects fitted with RFID tags. The tags are small and require no power supply of 
their own so that they can be inconspicuously attached to objects. An RFID reader can  be 
attached to the user’s wrist so that tagged objects that are handled by the user fall within the 
detection range of the reader. For the CogWatch project this method will be used to supply 
the computer with a history of all objects that have been interacted with. This data will be 
used to support the recognition algorithms that will be used to detect and identify errors in 
the sub-goals and tasks performed by patients. 

This RFID based method has been used in past research to automatically recognise ADLs 
by looking at the sequence of objects interacted with. Similar methods could be used to 
detect sequence and omission errors in tasks, which is a required capability of the 
CogWatch system. However a system that only uses RFID cannot detect what actions are 
performed with a single object – only the fact that it was handled. Many objects will require 
other sensors to enable the detection of usage errors. For very small objects, which are too 
small to support wireless electronics and a battery, RFID is the only suitable method of 
detecting interaction. Camera based methods can be used but the camera’s sight of small 
objects is easily obscured. 

There are many options for the tags that can be used. Due to high availability and low price, 
Mifare Ultralight tags are suitable for this project. The 45mm RFID sticker labels are well 
suited for tagging large items such as mugs, and 20mm sticker discs and 13mm laundry 
tags are available for tagging smaller objects. 

3.1.3 Accelerometers 

Accelerometers will be attached to the tools and objects involved in the task.  Usage errors, 
such as holding an object in the wrong orientation or shaking a kettle instead of pouring 
from it, cannot be detected from simple RFID sensors. The use of vision based techniques 
using the Kinect camera system may make it possible to detect these kinds of error; 
however this can be very difficult and may fail completely if vision is obscured. For this 
scenario accelerometers attached to the objects can be extremely helpful in providing the 
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data required. Accelerometers provide data about movement as well as orientation. They 
are commonly used in many activity recognition applications due to the quality of data they 
provide. They are also very small and have low power consumption, making them ideal for 
embedded electronics. For these reasons it can be argued that accelerometers should be 
embedded on all mobile ADL objects that can accept the electronics without hindering use. 

3.1.4 Force sensitive resistors (FSRs)  

FSRs can be used to measure a physical force applied to their surface. Applying these 
sensors to the bottom of objects such as a mug or a kettle results in data that can be used 
in two ways: 

 The force data could be used to detect that the object has been picked up off the 
work surface, as the object’s own weight would no longer be detected. 

 If the quantity of water within the object changes (relevant to mug/kettle in the tea-
making task) then this would be detected by the force sensors through a change in 
the weight in the object.  

3.1.5 Force sensitive handles (FSHs) 

The instrumented handle is a wireless sensor for handles of objects such as cutlery and 
tools. The instrumented handle is not just embedded electronics; it is a replacement for the 
entire handle of the object. The handle incorporates an accelerometer plus strain gauges 
fitted to its sides to measure changes in grip force. 

Objects with handles, such as cutlery, are handled in a rather complex manner, and correct 
grip plays an important role in successfully completing any task. Grip force sensing can be 
used to detect errors in patients involving significant insufficient or excessive grip force. 
Furthermore, the changes in grip over time can be used to assist the automated recognition 
of the activity that is being carried out with the instrumented object. Research has been 
done with multiple prototypes to ascertain the potential of strain gauge grip sensing in the 
CogWatch project.  

The sides of the instrumented handle are made out of strips of steel. Strain gauges are 
used to measure the small amounts of bending that occurs when any force is applied. This 
gives a generalised measure of grip force applied across the handle. Adding more than one 
strain gauge to each side of the handle could help to build a more accurate calibrated model 
of grip force, but the increase in circuit size, power consumption and cost would be 
unacceptable for the CogWatch project. 

An initial prototype force sensitive handle with only 2 grip sensing sides was rejected 
because during use a lot of grip force is applied to the wrong sides of the steel strips, where 
it cannot be properly detected. With three sensing sides most grip patterns apply force in 
the correct sensing directions and so this has been chosen as the ideal design. 

3.1.6 Wireless connectivity 

Bluetooth is used for the wireless connection between the sensor units and the computer. 
Bluetooth is a well supported, low power standard for wireless communication for small 
devices, with a communication suited to rooms in a standard house.  Due to its wide support, 
using Bluetooth opens up the possibility of direct connection to many devices such as 
mobile phones and tablet computers, allowing for future expandability.  
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Zigbee wireless (and similar proprietary protocols such as MiWi) based technologies may 
provide better power management (and hence better battery life) than Bluetooth and more 
flexibility for the management of large networks of sensor units. However, the amount of 
sensor data that can be transmitted using such technologies is much smaller and the 
implementation would be much more complex. The viability of such technologies cannot be 
confirmed until the minimal useful sensor data is confirmed through trials. 

3.2 Functionality of sensors for tea-making 

Figure 3 indicates the utility of each type of sensor for the tea-making task.  The rows of the 
table correspond to different sensors and the columns to ‘events’ that may or may not be 
detectable with that sensor.  In the figure, a solid disk indicates that a particular event can 
be detected using the relevant sensor, and a hollow disk indicates that detection may be 
possible.  At present this table is based largely on knowledge and expectation rather than 
practical experience with the sensors.  The table will be updated as the project progresses. 

In Figure 3 ‘contact’ refers to actual contact or very close proximity to an object.  It is 
distinguished from proximity to differentiate between Kinect and RFID technologies.  The 
extent to which proximity is detectable by RFID will depend on the range of the receiver, 
which varies between 30cm and 1cm according to the literature.  FSRs are the only type of 
sensor capable of detecting weight changes, and the FSH is the only sensor capable of 
measuring grip. 

The event ‘use’ refers to factors such as tilting a cup to take a sip of tea, or tilting a milk jug 
to pour milk into a cup.  Although vision-based sensors and the FSH will give clues to this 
type of activity, it is expected that the most reliable information will come from an 
accelerometer.  It should also be noted that some types of event will be best detected using 
combinations of sensors.  For example, in pouring milk from a jug into a cup, the change in 
orientation of the jug will be indicated by accelerometer data, but also through the FSRs 
attached to the cup due to the increase in its weight.  The issue of ‘coupling’ between the 
sensors will be revisited in Section 6 where pattern-based action recognition is discussed. 

 

 Contact Proximity Weight Lift Grip Motion Position Use 

Kinect         

RFID         

Accelerom.         

FSR         

FSH         

Figure 3: Functionality of sensors for the tea-making task 
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3.3 The CogWatch instrumented coaster 

3.3.1 Specification 

The CogWatch Instrumented Coaster (CIC) is an electronic coaster (or drink mat) which can 
be attached to the base of a mug or jug. 

 

Figure 4: The CogWatch instrumented coaster attached to the base of a mug 

The CIC contains a 3 axis accelerometer, three FSRs, a microcontroller and a Bluetooth 
module.  Full details of the CIC are included in CogWatch report D2.1. 

3.3.2 Functionality of the CIC 

Referring to Figure 3, for an object fitted with a CogWatch instrumented coaster it will be 
possible to detect the fact that the object has been lifted from the work surface, that the 
object is in motion, changes in weight of the object (due to changes in its contents) and the 
use of the object (for example, tilting a cup to take a sip of tea). 

3.3.3 Output of the CIC 

The CIC will output 6 measurements: x, y and z measurements from the accelerometer plus 
1 measurement from each of the FSRs. 

3.4 Instrumentation in the first CogWatch prototype 

The proposed instrumentation of the first CogWatch prototype is shown in Figure 5.  The 
precise instrumentation of the kettle will depend on whether it is a normal free-standing 
kettle, with a stand connected with a mains connection (in which case a CIC and an RFID 
tag are appropriate), or a kettle mounted in a frame for safety reasons, so that it can only be 
tipped in the correct manner. 

 

 

 

 

Schematic illustration of the 
CogWatch Instrumented 
Coaster (CIC), attached to 
the base of a mug.  The 
coaster contains a 3-axis 
accelerometer, three PSRs 
plus a controller chip, a 
Bluetooth module and 
batteries 



Confidential 

  

 

 

Grant Agreement # 288912       Cogwatch – UOB – D3.1                        Page 22 of 52 

 

 

Object Sensors Number of 
outputs 

Cup/Mug CIC 6 

 RFID tag 1 

Jug/Milk Container CIC 6 

 RFID tag 1 

Sugar Container CIC 6 

 RFID tag 1 

Kettle* CIC 6 

 RFID tag 1 

Tea spoon RFID tag 1 

Tea bag RFID tag 1 

Left hand Kinect 3 

Right hand Kinect 3 

Total  36 

Figure 5: Instrumentation for the 1st CogWatch prototype 
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4. THE FIRST PROTOTYPE ACTION RECOGNITION SYSTEM 

Figure 2 shows the action recognition system that will be at the centre of the M16 
CogWatch prototype system.  The purpose of the diagram is to indicate the component 
parts of the system that need to be considered, and it should not be seen as a definitive 
statement of the system architecture.  For example, it would be equally valid to show the 
complete system as a subset of the task model. 

4.1 Components of the action recognition system 

4.1.1 Sensor data capture and pre-processing 

The left hand side of the figure shows the array of sensors attached to the objects involved 
in the task and to the participant’s body.  These are input via a wireless connection to the 
action recognition system.  In the pre-processing (feature extraction) stage, the 
synchronized measurements from the sensors are transformed into a feature vector.  The 
objective being to emphasize components of the measurements which are important for 
activity recognition, and to de-emphasize those which are not (the noise).  

 
Figure 6: Prototype CogWatch action recognition system. 

4.1.2 Automatic action recognition (AAR) 

The purpose of the AAR component of the system is to interpret the sequence of feature 
vectors constructed from the outputs of the sensors in terms of the tasks and sub-goals 
performed by the participant.  The key challenge is to accommodate intra- and inter-
participant variability in these measurements, for participants engaged in the same activity.  
There are many possible approaches to this problem in the pattern recognition literature, 
and a number of these have been applied to action recognition from instrumented body and 
object data in the past.   Candidates include Hidden Markov Models (HMMs) (e.g. Patterson 
et. al. (2005), Wang et al. (2007), Ward et al. (2006)), Dynamic Bayesian Networks (DBNs) 
(e.g. Patterson et. al. (2005), Wang et al. (2007)), Decision Trees (e.g. Hong et al. (2008)) 
and Finite State Machines (e.g. Stiefmeier et al. (2008)). 
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The CogWatch prototype places very specific requirements on the pattern recognition 
component.  In addition to achieving sufficiently good activity-recognition accuracy to 
support the CogWatch application, the system must run in real-time and must be capable of 
processing a continuous stream of data.  Continuous recognition is a much more difficult 
problem than many of the ‘activity classification’ tasks that are described in the activity 
recognition literature.  In classification, the data is pre-segmented so that the pattern 
recognition system is presented with a finite sequence of feature vectors that corresponds 
to a single activity, and the task is to correctly identify that activity.  In continuous recognition 
the activity boundaries and the number of activities that have been performed by the 
participant are unknown, leading to potential segmentation, deletion and insertion errors in 
addition to classification errors. 

In the CogWatch prototype we propose to use HMMs for action recognition.  HMMs have 
been applied to automatic speech recognition (ASR) since the mid 1970s (Baker, 1975).  
They were popularised a decade later by researchers at AT&T Bell Laboratories (Rabiner et 
al., 1985) and now form the basic ‘acoustic-phonetic’ component of all commercial speech 
recognisers and the majority of research systems.  Bridle et al. (1982) showed how Viterbi 
decoding, the recognition algorithm that underpins HMM-based ASR, could be extended 
from simple word recognition to connected speech recognition, and a technique called 
‘partial traceback’ (Spohrer et al., 1980) allows these systems to run continuously without 
running out of memory. 

In a HMM-based speech recognition system the grammar, or syntax, defines the 
recogniser’s vocabulary and captures constraints (normally in the form of probabilities) on 
word order.  The pronunciation dictionary expresses each vocabulary word as one or more 
sequences of phones (allowing for alternative pronunciations), and the phones are modelled 
as context-sensitive HMMs.   By analogy, in our proposed pattern based activity recognition 
system, the task model expresses a goal as a hierarchy of sub-goals, which in turn are 
described in terms of (one or more) sequences of basic tasks.  We propose to model either 
these basic tasks or the sub-goals using HMMs.   

There are, of course, some important differences between speech and activity recognition. If 
it is assumed that words in ASR correspond to sub-goals in activity recognition, then the 
vocabulary size is typically very much smaller in activity recognition.  In addition, speech is 
sequential.  One word follows another, and there is no possibility that a speaker will produce 
two words at the same time.  The same is not true in activity recognition, where a participant 
may, for example, move a jug and use it to pour milk into a mug with one hand, while at the 
same time (or at least in overlapping time) initiate another action with the other. 

These issues, and the definition of the HMM-based activity recognition system, are explored 
in more detail in Section 6. 

4.1.3 The Task Model (TM) 

The purpose of the Task Model (TM) is to collate the sub-goal labels that are output from 
the AAR system as sub-goals are achieved and use these to maintain a record of the 
participant’s progress with respect to goal completion.  The TM needs to be able to 
determine whether or not a particular set of sub-goals is likely to be extensible to a 
successful achievement of the whole goal, and it must contain sufficient information to allow 
useful cues and feedback to be given.  A range of psychological, ergonomic and statistical 
candidates for the CogWatch TM are discussed in the next Section. 
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5. MODELS OF HUMAN TASK EXECUTION (THE “TASK MODEL”) 

5.1 Role of the Task Model (TM) in the CogWatch system 

In the context of automatic human activity recognition in the CogWatch project, the term 
‘Task Model’ (TM) refers to a computational model that satisfies the following requirements: 

5.1.1 Inference of the ‘belief state’ 

The TM should be able to infer the participant’s status with respect to the current goal from 
the outputs of the decoder.  With reference to spoken dialogue processing (e.g Levin et al., 
2000) this status is be referred to as the system’s ‘belief state’.  In a probabilistic system a 
more subtle objective is to maintain a probability distribution over the set of possible belief 
states as the participant’s sequence of actions unfolds. 

5.1.2 Sub-task history 

Part of the Belief State should be the sub-goal history - a record of the sub-goals that have 
been completed by the participant at any point in the execution of the activity.  This will be 
needed by the system designer to construct appropriate feedback or cues to the participant. 

5.1.3 Sub-task prediction 

Given the current Belief State (or distribution over possible Belief States) the TM should be 
able to predict the next most probable sub-goal.  Again, this will be needed by the system 
designer to construct appropriate feedback or cues to the participant. 

5.1.4 Failure prediction 

The TM should be able to detect when the participant is unlikely to achieve the goal 
successfully.  This is needed to prompt the provision of feedback or cues to the participant.  
The implication of this requirement is that the TM belief state should include some measure 
of the ‘cost’ of reaching the current state.  The cost could be a function of transaction time or 
the number of incorrect actions performed. 

5.1.5 Cue / feedback generation 

The contents of the belief state should be sufficient to enable the system designer to 
synthesise useful cues and feedback to the participant.  In general, the feedback and cue 
will depend on the specific error that has occurred, and the information contained in the 
belief state must be sufficient to support this.  For example, the cue will depend on the best 
next action given past history, and whether the error committed needs corrective action (for 
example, “remove X from Y”, and if so this action may also be subject to error).  The precise 
design of the feedback or cues should be specified in WP1/4 via WP2.  For WP3 the 
requirement is to liaise with WP1, WP2 and WP4 to determine the information that is 
needed to construct appropriate cues or feedback.   

5.1.6 Task execution recording 

The TM must be able to record a specific sequence of sub-goals which are sufficient to 
achieve the goal, demonstrated by the participant’s helper or clinician.  The TM must be 
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configurable automatically to incorporate this sequence (or minor variations of this 
sequence) as a guide or constraint for the participant. 

5.1.7 Knowledge-driven versus data-driven 

Experience in other fields which involve modelling human behaviour suggests that in order 
to model variability in human performance, it is necessary to use complex models whose 
parameters (and to some extent structure) are learnt automatically from data.  Therefore, 
once sufficient data becomes available through WP1, it should be possible to use this data 
to train the parameters and structure of the TM.  However, in the first 12 months of the 
project this data will not be available.  Hence the TM in the first prototype CogWatch system 
will need to be at least partially manually configured. 

5.1.8 Psychological plausibility 

Ideally, the TM should be psychologically plausible.  In order to satisfy 3.4.1.1 to 3.4.1.6 the 
model must be an accurate model of human goal execution.  In other words, it must give 
high scores to sequences of actions that a patient (or a relevant clinician) would consider to 
be a successful achievement of the goal, and low scores to sequences which are unlikely to 
result in successful goal completion, or which simply take too long.  In addition it is desirable 
(but not essential) that the model is ‘psychologically plausible’.  For example, the 
mechanisms that the model uses to characterise task execution might reflect known 
cognitive processes, or the model might respond in a similar way to a human participant to 
factors such as distracter objects. 

5.1.9 Computational utility 

The TM must be computationally useful.  In other words it must be sufficiently well-defined 
to be implemented in software, and, in the case of the CogWatch prototype, it must be 
sufficiently simple for real-time execution. 

In the next section possible TMs are reviewed against the criteria in 3.4.1. 

5.2 Candidates for the CogWatch Task Model 

5.2.1 Contention Scheduling Model – Norman and Shallice (1986) 

Norman and Shallice (1986) proposed a dual-systems account of action selection. 
According to their Contention Scheduling Model, routine well-practiced actions are 
controlled via the Contention Scheduling System (CSC), whereas actions that require 
attentional supervisory control are governed by the Supervisory Attentional System (SAS). 
In the SAS, Normal and Shallice propose that actions are represented as schemas and that 
these schemas reflect the learned relationship between an action and a set of features 
perceived in the environment. Thus, an individual will learn to pair sets of features with 
specific actions.  However, there might be situations in which a set of features could be 
related to more than one action, e.g., when standing in front of a door, one might perceive a 
set of features (handle, hinges etc.) and have a set of actions that could be performed (such 
as turn handle and push door, or turn handle and pull door). In situations where there is not 
just one action that is immediately apparent to apply, one needs to select between different 
schemas.  Contention Scheduling is the basic mechanism by which one schema is selected 
over another competing schema. Contention Scheduling assumes that selection is 
dependent on the schema being activated above threshold, and that schemas are triggered 
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via both top-down and bottom-up processes. Further, when a schema is selected it 
activates its hierarchical ‘component’ schemas and/or controls the execution of the requisite 
actions. When the action sequence is executed, the component schemas form a “horizontal 
thread”, which is a processing structure that enables the routine action to be carried out 
without intervention.  

 

Figure 7:  The Contention Scheduling model (Adapted from Norman and Shallice, 1986) 

The Contention Scheduling Model also proposes that attention is not essential for the 
execution of routine well-practiced actions, but that action selection is modulated by 
attention from the SAS. Within the Contention Scheduling Model, the SAS forms the 
“vertical thread” which is activated when a novel task is performed, or when attention to the 
task is required.  

The Contention Scheduling Model is a psychological model that requires a total of eight 
parameters that control the flow of activation within and between various networks of the 
model. Two parameters control the more general aspects of network dynamics, namely rest 
activation and persistence. Rest activation refers to the activation level to which activations 
in all domains tend in the absence of any net input. Persistence refers to the degree to 
which activation values persist over time with a net input of zero. Together, these 
parameters coalesce and provide smooth activation profiles through processing. A third 
parameter governs the standard deviation of normally distributed random noise that is 
added to the net influence in all domains, and accounts for variation in behaviour that 
occurs in biological systems. If the noise (or random variability) is set too high, then it may 
lead to spurious action selection. The CS model also includes three balance parameters 
which govern the contribution of the various activation influences to the net input within all 
networks. The four inputs (excluding noise) are: self influence, lateral influence, an internal 
influence, and an external influence. Self influence and lateral influence are competitive 
processes, with the parameter Self:Lateral controlling the relative proportion of self influence 
and lateral influence in the final influence on a node. Internal influence and external 
influence are non-competitive, and the Internal:External parameter controls the proportion of 
internal and external influence on a node. The third balance parameter controls the 
proportion of competitive and non-competitive influences that contribute to the total 
excitation or inhibition of a node. Within the schema network, a ninth parameter, the 
selection threshold, governs schema selection and specifies the activation level above 



Confidential 

  

 

 

Grant Agreement # 288912       Cogwatch – UOB – D3.1                        Page 28 of 52 

 

 

which a schema node must be excited in order to be selected. When competition is 
functioning appropriately, the model is relatively insensitive to this parameter. However, if 
the selection threshold is extremely high (> 0.95), schema selection tends to fail because 
schemas cannot become sufficiently active. If the selection threshold is too low (< 0.50), 
schemas tend to be selected before competitive processes have achieved their purpose, 
and as such spurious selection of schemas are more likely to occur. 

5.2.1.1 Errors: 

Cooper & Shallice (2000) evaluated the Contention Scheduling Model in a coffee 
preparation task (Schwartz et al., 1991, 1995, 1998), with the goal to assess the models 
ability to produce well-structured action sequences in complex tasks, to determine the 
susceptibility of the normally functioning model to action lapses (capture, omission, 
anticipation, perseveration, object substitution), and to assess whether the model would 
yield behaviour that is qualitatively similar to that observed in individuals with action 
disorganization syndrome (Schwartz et al., 1991, 1995, 1998). The results indicated that the 
CS model is able to explain actions errors that occur during routine tasks, such as logging 
into a personal email account using work login details. These ‘capture errors’ occur when 
environmental cues for a different, but familiar, action ‘capture’ behaviour, and are thought 
to occur when insufficient attention is paid to the intended task. 

 

Figure 8: Principal components of the Interactive Action Model (Cooper & Shallice, 2000). 

5.2.2 The interactive action model (IAN) - Cooper and Shallice (2000)  

The general principles of the Contention Scheduling Model were instantiated in the 
Interactive Action (IAN) model of Cooper and Shallice (2000). Central to the IAN model is 
the hierarchically organized schema network, within which individual nodes correspond to 
action schemas. Each node has an independent activation value, which are triggered when 
a node exceeds a given threshold. These activations can occur via top-down-, 
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environmental-, lateral-, and self- influences. The IAN model proposes that selection of high 
level schema (e.g., ‘make coffee’) result in high excitation of component schema. In contrast, 
selection of low level schema (e.g., ‘pick up spoon’) enables allocation of object 
representation and resources from two separate networks, which precedes action execution.  
 
As in the CSC model, activation flow within the schema network is controlled via four 
parameters: SS (degree of self influence), LS (degree of lateral influence), IS (degree of 
intrinsic, or schema-to-schema, influence), and ES (degree of extrinsic, or object-to-
schema, influence). Similar parameters control activation flow within and between the other 
networks, with the subscript S, O and R used to indicate schema, object representation, and 
resource network parameters respectively. The impact of activation on any node within each 
network is subject to normally distributed random noise, with the standard deviation of the 
noise distribution is given by the noise parameter, N. Last, the parameter, P, controls the 
degree to which activation of nodes persists from cycle to cycle in the absence of other 
influences. 

5.2.2.1 Errors 

The IAN model was evaluated by Cooper et al. (2005) during a lunch packing task to data 
reported in healthy and neurological patients (cf. Schwartz et al. 1998). To this end, an 
appropriate schema hierarchy was first developed for the lunch packing task, and featured 
an object representation network that comprised of nodes for each object that could be used 
in the task. Each object was represented by a set of features that related to the object (e.g., 
shape and size), and were used to determine how the objects behaved when acted upon, 
and the extent to which the objects triggered schemas or were triggered by schemas. 

Because the model’s behaviour is strongly dependent on the relative activation flow within 
and between the three activation networks, Cooper et al. (2005) performed a number of 
simulations to determine the appropriate values for each parameter that would yield well-
structured behaviour. When SS = 0.23, LS = 0.46, IS = 0.50, ES = 0.10, P = 0.87 and 0.00 < 
N ≤ 0.01, Cooper et al. (2005) found that the model was able to perform the complete task 
without error. Deviations from this parameter space (e.g., by increasing the noise 
parameter) result in errors that are similar in frequency and type observed in healthy 
individuals. Cooper et al. (2005) then tested the ability of the IAN model to account for 
behavior in neurological populations in three ways. First, they varied the balance between 
top-down excitation of schemas and bottom-up, environmental, triggering of schemas. 
Second, they increased noise in the schema network. Third, they increased noise in the 
object representation network.  
 
Simulations in which the top-down/bottom-up balance within the schema network were 
altered revealed that while an imbalance in top-down and bottom-up activation reproduces 
significant correlations between accomplishment and error rates, it does not account for the 
relative frequency of commission errors that have been reported in behavioral studies (cf. 
Schwartz et al. 1998). Further, manipulating the balance of top-down/bottom-up activation 
fails to replicate behavioral observations in the presence of distractors. Cooper et al. (2005) 
hypothesized that the inability of the IAN model to account for behavior in ADS patients is 
due to the use of strict pre- and post-conditions introduced in order to simulate behaviour on 
the more complex lunchbox task, and/or the scoring system used was too conservative and 
did not count action additions as errors. 
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Cooper et al. (2005) also ran simulations designed to degrade the effectiveness of selective 
schema network excitation and inhibition by manipulating the noise parameter (i.e., the 
standard deviation of noise within the schema network ranged from 0.01 to 0.25 at intervals 
of 0.01). The results indicated a strong positive correlation between task accomplishment 
score and the number of omission errors, and a mild negative correlation between 
accomplishment score and commission errors. The simulation results also demonstrated an 
increase in both omission and commission errors with increasing levels of noise. There was 
also a strong influence of task distractors on total errors, the number of omission errors, and 
the number of commission errors. Based on these results, Cooper et al. (2005) concluded 
that increasing noise in the schema network captures many of the hallmark characteristics 
of ADS.  
 
Simulations in which noise within the object representation networks were increased (i.e., 
the standard deviation of noise within the object representation networks ranged from 0.01 
to 0.25 at intervals of 0.01) was also examined. As in the previous simulations, the 
simulations revealed a strong negative correlation between accomplishment score and the 
number of omission errors. However, in contrast to the two aforementioned simulations, 
there was a mildly positive correlation between accomplishment score and the number of 
commission errors. The simulation results also revealed a number of findings that are 
similar to that produced by noise in the schema network and to neurological populations: 
omission, substitution and action addition errors increased when distractor objects were 
present, omission errors are the most common type of error, and the proportion of 
commission errors is greater for low error producers than for high error producers. These 
results were interpreted as evidence that the interactions between schema nodes and 
object representation nodes are reciprocal, such that noise in one network is propagated to 
the other network. The effect of noise is modulated by schema triggering functions, with 
noise in the object representation network causing a degradation of schema excitation 
activation.   
 
Based on the simulation results, Cooper et al. (2005) suggested that errors occur in 
response to the interaction between environmental and top-down activation influences. 
‘Perseveration’ errors occur most frequently and are performed when a schema is not 
deselected, which result from either too much self-activation or a lack of inhibition. ‘Capture’ 
errors occur when an environmental source of activation is relatively stronger than the top-
down activation. ‘Omission’ and ‘anticipation’ errors occur due to insufficient activation of 
appropriate schema. ‘Omission’ errors are a result of poor environmental cues or self-
activation, whereas ‘anticipation’ errors occur when an action cannot take place because a 
pre-condition has not been met (e.g., toast cannot be buttered if the lid is still on the butter). 

5.2.3 Simple recurrent network (SRN) - Botvinick and Plaut (2002, 2004) 

In contrast to the two aforementioned action recognition models (i.e., CSC, IAN), the Simple 
Recurrent Network (SRN) model proposed by Botvinick and colleagues (Botvinick and Plaut 
2004; Botvinick et al. 2009) is based on recurrent connections within a network mapping 
from environmental inputs to actions in everyday tasks. The SRN model makes a distinction 
between the hierarchical structure of a task and its cognitive representation. Sequential 
behaviour is modelled using a parallel distributed processing (PDP) account, which can be 
thought of as a general learning mechanism that learns from samples in the environment.  
Whereas the CSC and the IAN models feature hierarchical schema structures, the SRN 
postulates that understanding the task structure is controlled via the emergent properties of 
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the processing system. The PDP model is comprised of individual nodes, which are 
activated via excitation and inhibition from the nodes that are linked to it (Botvinick and Plaut 
2004). The SRN is divided into three layers: an ‘input’ layer that provides a representation of 
the perceived environment, a ‘hidden’ layer which transforms the input information, and an 
‘output’ layer that represents the action taken. In the SRN model, every hidden node is 
connected to all nodes in both the input and output layers, and each unit in the “hidden” 
layer is connected to every other unit in the hidden layer. Furthermore, each step of 
processing carries information about the state of the system at the previous time point, and 
as with recurrent connectivity principles, information can be preserved and transformed 
across time. In this way, the SRN is sensitive to temporal context. 

 

 

Figure 9: The architecture of the overall Simple Recurrent Network (Botvinick & Plaut, 2004). 
Open arrows indicate the connections between units in each layer of the system.  

5.2.3.1 Errors: 

Botvinik and Plaut (2004) tested the efficacy of the SRN model in a coffee preparation task. 
Performance of the SRN model was first compared with data collected from healthy 
individuals who did not make performance errors. The model was then subjected to action 
slip by adding zero-mean, normally distributed, random noise to activation values in the 
hidden layer at the end of each processing cycle. Lastly, the model was evaluated again the 
behaviour of patients with ADS. The results indicated that the SRN was able to model error-
free behaviour, as well as task performance with low error rates (noise values below 10%). 
At low noise values, the model produced errors that are typically observed in patients with 
neurological impairments; namely omissions and errors in action sequence. Similarly, when 
the model was evaluated with respect to the performance of ADS patients, it reproduced 
several hallmark characteristics of ADS behaviour: performance deteriorated as the level of 
noise increased, errors were either of the omission or action sequence type, and there was 
a marked increase in the proportion of omission errors with overall error rate. 

5.2.4 Automated probabilistic models of everyday activities (AM-EvAs) – 
Beetz, Tenorth, Jain, and Bandouch (2010) 

An alternative approach to action recognition modelling has been developed by the 
Intelligent Autonomous Group (IAS) at the Technical University of Munich (TUM). The 
automated probabilistic models of everyday activities (AM-EvAs) advanced by Beetz et al. 
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(2010) are detailed, comprehensive models that describe human actions at various levels of 
abstractions: from raw poses and trajectories, to motions, actions, and activities. AM-EvA’s 
consist of automated activity observation systems, interpretation and abstraction 
mechanisms for behaviour and activity data, a knowledge representation and reasoning 
system for symbolically representing the activity data, and a query system that allows AM-
EvA’s to answer semantic queries about the observed activities. A knowledge based 
framework integrates methods for human motion tracking, for learning continuous motion 
models, for motion segmentation and abstraction, and for probabilistic reasoning. At each 
level, all information in the system is represented in combination with its semantic meaning, 
which enables automated reasoning on the observations.  

For the purposes of the CogWatch Task Model, the most important aspect of AM-EvA’s is 
the partial-ordered learning models. The advantage of this approach is that the system 
learns a model that is able to describe complex tasks including their partial order from 
observed data. Using Bayesian Logic Networks (BLNs), the joint probability distribution over 
the actions in an activity, their properties, and their pairwise ordering constraints, can be 
extracted. These pairwise ordering constraints result in statistical models that describe the 
partial order imposed on all actions in a task, as well as the general relations between 
consecutive actions and their properties. From training data partial-ordered models can 
learn which actions are relevant and which ordering relations are important, such that 
actions that occur in all observations of a task are considered more relevant than those that 
are only rarely observed, and ordering relations that consistently hold are also more likely to 
be important.  

The approach of the partial-ordered learning models is illustrated in Figure 10. The task of 
making brownies can be reached by significantly different action sequences (Figure 10: left 
most panels), which may be influenced by individual preferences or task context. The colors 
indicate the dependencies among the actions, which are also shown in the partial-order 
graph (Figure 10: rightmost panel). The arrows in the partial-order graph indicate the 
precedence relation between actions; an arrow from A to B means that A happens before B. 
The goal of is to learn the partial-order graph from a multitude of diverse action sequences 
like those in the left part of Figure 10. In many cases the training set does not equally cover 
all alternatives ways that an action can be performed, but shows some bias, introducing soft 
precedence constraints in addition to the causal dependencies between the actions. These 
soft constraints can be represented using a statistical model that can describe the 
probability of a precedence relation based on how consistently it was observed in the 
training data (visualized by the gray arrows in Figure 10). 

5.2.4.1 Errors 

The partial-ordered learning model has been evaluated on both synthetic data and two real-
world data sets of human activities (‘making brownies’ and ‘cooking an omelette’), (Tenorth, 
2011). Testing the models on synthetic data tests the extent to which the models are 
influenced by noise in the data, and to check if the actual partial-order graph can be 
reconstructed. The real-world data sets provide realistic and more complex test data, and 
provide the opportunity to verify that partial-order models perform well on ADL scenarios. 

To test the influence of irrelevant actions in between important actions, the sampling 
algorithm was modified so that a “noise” action may be chosen instead of a relevant action 
with a certain probability. In the experiments, the probability of selecting a “noise” action 
was set to 10%, 20%, and 50%. As shown in Figure 11, the partial-ordered model was 
about to learn a model that allows for good classification of action sequences, even with 
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very noisy sequences (50%) in which about half of the actions are not relevant for the task. 
The classification results were also compared to Hidden Conditional Random Field models 
(HCRFs, Quattoni et al., 2004). It was found that HCRFs could directly model the sequence 
of actions, but were unable to take into account longer-range dependencies such as global 
ordering constraints. Further, HCRFs could model the data adequately at when the level of 
noise was low (Figure 11, lines without markers), the performance of HCRFs decreases 
substantially when the proportion of irrelevant actions increases. In sum, the results of the 
model evaluation shows that AM-EvA’s outperformed models often used in activity 
recognition (e.g., Conditional Random Field models, Hidden Markov models) for common 
tasks since they are much less confused by the variation inherent in human activities. 

 

 

Figure 10: From several observations of the same task (left), the system learns the partial 
order of actions in that task (right) using statistical relational learning models (Tenorth, 2011) 

 

 

Figure 11: Recognition rates on synthetic data with different noise levels (10%, 20% and 50% 
probability of choosing a noise action) and sizes of the training and testing set (5 to 50 

samples, see x-axis). Left: Hidden Conditional Random Field models (HCRF). Right: partial-
ordered models. (Tenorth, 2011). 

 

Tenorth (2011) also evaluated whether the partial-ordered learning model could infer the 
types of single actions in a task by randomly sampling sequences from the nosiest version 
of both activities (50% noise actions), removing the type of an arbitrary action in the test 
sequence, and inferring this given the rest of the sequence. As shown in Figure 12, the 
model was able to infer the type of an action given the type of the activity and the 
surrounding actions. Action N8, for example, is always the last non-noise action in every 
sequence and can thus easily be identified (seq. 12, 33). When there is confusion, it is 
mostly between actions on a similar level of the precedence graph (e.g. N4 and N1 in seq. 
37) or between direct predecessors and successors (as in seq. 25, where N5 and N6 are 
direct predecessors of N7). 
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5.2.5 Hierarchical Task Analysis (HTA) 

While the decomposition of activity into component tasks is common across a range of 
disciplines, Human Factors (particularly in the UK) employs a methodology called HTA, 
Hierarchical Task Analysis (Annett et al., 1971; Shepherd, 2001). What is important in this 
approach is not simply the hierarchical decomposition but also the definition of ‘plans’.  The 
hierarchy is typically described in terms of decomposition of a ‘goal’ into ‘sub-goals’, moving 
from a high-level objective to lower-level tasks, as in Figure 2. However, as discussed in 
Section 2.2, this hierarchy gives little indication of either the sequence in which tasks need 
to be performed or the conditions under which task completion is achieved.  By separating 
tasks from conditions, HTA provides a simple but powerful means of creating a description.  
Furthermore, subsequent analyses can be built on HTA which generate predictions of errors, 
e.g., using techniques borrowed from Failure Modes Effects Analysis (FMEA) such as 
SHERPA (Embrey, 1986; Stanton and Baber, 1996). 

In the notation for plans, ‘>’ signifies “followed by” to indicate sequence, numbers indicates 
sub-goals in the hierarchy, and text indicates ‘conditions’.  In this example, there are two 
alternative plans. 

Subgoal Plan 

0.0 Make tea a.) 1.0 > while waiting > 2.0 > when water ready > 3.0 > if 

required 4.0 + 5.0 > 6.0 > 7.0 exit 

b.) 2.0 > 1.0 > 3.0 > if required 4.0 + 5.0 > 6.0 > exit 

5.2.5.1 Errors 

For each sub-goal, the analyst infers which of the Error Modes could potentially apply.  The 
Error Modes were originally defined for power station control rooms and other process 
industries and, while they have been used in the analysis of ticket vending machines and 
similar products, it is not obvious that they can be directly translated to the CogWatch 
scenarios without modification. However, the following table gives an outline of their 
application. 
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Subgoal Error mode Consequence 

0.0 A8 Tea is not made 

1.1 A4 Kettle has too much / 

too little water 

 A6 Container other than 

kettle is filled 

 A8 Kettle is not filled 

5.2.6 Markov Decision Processes (MDPs) 

Markov Decision Processes (MDPs) have been used in spoken language processing 
research as models of human interaction for dialogue processing.  There are several 
similarities between the requirements for a TM and those for a Spoken Dialogue Model 
(SDM).  In both cases the system needs to keep a record of the sub-sequence of sub-goals 
that have been completed, and the sub-goals that still need to be completed in order to 
complete the goal.  Both types of system need to be able to deal effectively with errors and 
to be able to provide suitable cues and feedback to the participant.  In the case of a SDM, 
the problem is compounded by potential recognition errors made by the automatic speech 
recognition component (and this may also be a problem in our ADL system). 

One approach to SDM is to model the dialogue as A Markov Decision Process (MDP) (for 
example, Levin et al., 2000).  A MDP consists of: 

1. A finite set S of N states.  In SDM these are often referred to as belief states, 

2. A finite set A of actions, 

3. For each pair of states s1 and s2 in S and action a, 

a. Pa(s1,s2) is the probability of being in state s2 at time t+1 given state s1 at 
time t and that action a was taken 

b. Ra(s1,s2) is the corresponding reward/cost 

For example, in a TM a state could represent a particular stage in successful tea-making – a 
sequence of tea-making sub-goals that can be extended to successful tea making.  In this 
case the state space would consist of all valid sub-sequences of sub-goals, implying a large 
value on N.   The actions could be the set of sub-goals.  If the system is currently in state s1 
and the participant completes sub-goal a and the sequence of sub-goals obtained by adding 
a to state s1 is a valid state s2, then the system would move to state s2 and no cost would 
be incurred other than a fixed cost for completing an additional sub-goal.   Otherwise, the 
system would remain in state s1, a cost would be incurred for completing an incorrect sub-
goal, and a message would be transmitted indicating the state of the system and the fact 
that an error had occurred. 

Due to the large value of N a substantial collection of examples of task execution would be 
needed to train a MDP from data. 



Confidential 

  

 

 

Grant Agreement # 288912       Cogwatch – UOB – D3.1                        Page 36 of 52 

 

 

5.2.6.1 Errors 

Errors occur when the current completed sub-goal is not a valid extension of the current 
state.  In this case the system remains in the same state and a cost is incurred.  Thus the 
model is able to accommodate insertion and substitution errors to some degree.  Deletions 
could be accommodated by allowing transitions to additional states, though this is more 
complex. 

5.2.7 Partially Observable MDPs (POMDPs) 

In an MDP the state sequence is “visible”.  There is a direct relationship between the 
sequence of sub-goals output by the activity recognizer and the current state of the MDP.  
However, in general this may not be the case.  If the output from the activity recognizer is 
ambiguous (for example, if two sub-tasks are almost equally probable) or if the activity 
recognizer makes errors, then it may not be possible to identify the actual state of the MPD.  
In this case the best that can be done is to try to infer the MDP state.  The result is that at 
any particular time during the execution of the task, the belief state of the system is a 
distribution over the possible states of the MDP.  If this is the case then the appropriate 
model is a Partially Observable MDP (POMDP). 

A POMDP is an MDP with the following additional structure. Using the notation from Section 
5.2.6, for each output o from the activity recognizer and each state s and action a there is a 
probability: 

 c. P(o|s,a), the probability of the observation o given state s and action a. 

POMDPs have been applied in Spoken Dialogue Systems research (Young et al (2010)) 
and, more closely to CogWatch, in automatic hand-washing assistance for dementia 
patients (Hoey et al. (2007, 2010)). 

5.3 Choice of Task Model in the first CogWatch prototype system 

5.3.1 Discussion 

From the perspective of the CogWatch system, the models proposed by Norman and 
Shallice (Secion 5.2.1) and Cooper and Shallice (Section 5.2.2) are synthesis models.  They 
are able to simulate error-free goal-directed action sequences, provided that the model 
parameters are set appropriately. To account for behaviour in AADS populations, the 
approach of Cooper and Shallice is to add random noise to the system (in Cooper and 
Schallice (2000) the noise parameter was set such that the noise was randomly distributed 
with a standard deviation of 10-3).  The models are evaluated from a psychological 
perspective.  A particular configuration of parameters and constraints is chosen, and 
judgements are made about whether or not the resulting sequences reflect patterns of 
human task execution.  If they do, inferences are made about human task execution. 

In terms of the criteria in Section 5.1, in order to function as a TM for the CogWatch system, 
a key attribute is that the model must be able to judge whether or not the sub-sequence of 
actions performed by the participant up to a particular point in time corresponds to a ‘valid’ 
sequence of sub-goals which is likely to result in successful completion of the goal.  It is not 
clear how this can be achieved directly with this model.  The Cooper and Shallice model 
could be run many times, and the proportion of times that the sub-sequence in question 
occurs in a successful sequence of actions could be used as a quality measure.  In effect, 
this amounts to using sequences of actions synthesised by the Cooper and Shallice model 
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to train the parameters of some form of statistical task model.  The key issue then becomes 
the choice of this statistical model. 

The main difference between the Cooper and Shallice model and that of Botvinick and Plaut 
(Section 5.2.3) is that the latter is a trainable connectionist model.  However, the 
observations that it is effectively a synthesis model, that it has traditionally been evaluated 
from a psychological perspective and that from the viewpoint of AAR its main utility is to 
synthesise data to train a statistical TM, apply equally well.  

In contrast to psychological models of action recognition, AM-EvA’s allow to query for 
semantically specified observation data, and to compare the style how the activities are 
performed with models learned from observations. These observations may either be prior 
observations of the same subject, which can be used to detect changes in their 
performance, or observations of a whole group of subjects, which allows one to assess how 
well a person performs in comparison to a reference group. The main advantage of AM-
EvA’s is the ability to learn the partial ordering of actions in a task using statistical relational 
learning methods. Additionally, AM-EvA’s are able to learn which actions are relevant and 
which ordering relations are important, and thus, can be used to classify and verify activities, 
identify relevant actions in an activity, and infer missing data. 

The model that underlies Hierarchical Task Analysis (Section 5.2.5) is very similar to the 
Cooper and Shallice model, in that it is a hierarchical tree of schema.  However, in HTA 
sequences of actions are synthesised from the tree manually in the form of plans, and 
potential errors are identified manually using established principles.  From the perspective 
of AAR, the issues are very similar to those raised in the context of the Cooper and Shallice 
model, namely that HTA is a method for synthesising action sequences that reflect human 
execution of a particular task.  Hence the main utility of HTA may be to determine the 
structure of a computationally useful statistical TM.  An advantage of HTA is that its 
treatment of errors is systematic rather than relying on corruption of the model parameters 
with noise. 

MDPs appear to satisfy the criteria for aTM for the CoWatch AAR system.  The main 
disadvantage of MDPs is the potential size of the state space, since the states correspond 
to all possible partial sequences of sub-goals that can be extended to successfully complete 
the task.  However, in the CogWatch tea-making task the number of sub-goals is small.  
Moreover, if the number of sub-goals that have been executed is too great, then this would 
trigger feedback and cuing, and ultimately the task would be abandoned.  Consequently it is 
possible to limit the size of the state space.  Even so, it is unlikely that enough training 
material will be available within the timescale for the development of the first prototype to 
enable the model parameters to be estimated from data.  However, an alternative solution is 
to use the Cooper and Shallice model or HTA to define the state space. 

POMDPs are an extension of MDPs.  Therefore the need to use POMDPs as a TM is likely 
to arise from the discovery of limitations of MDPs, for example an inability to deal effectively 
with ambiguity in the output of the AAR system.  Therefore a judgement of the necessity of 
POMDPs will be deferred until more is known about the utility of MPDs in the context of 
CogWatch. 
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5.3.2 Summary 

In summary, at this stage of the project the most promising candidate for the CogWatch 
system TM is a MDP, whose structure and parameters are determined by applying HTA to a 
hierarchical tree description of the tea-making task. 

However, it is anticipated that future versions of the system will use more sophisticated 
models, such as AM-EvAs, whose structure and parameters are derived more from example 
data. 
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6. PATTERN-BASED ACTION RECOGNITION 

6.1 Introduction 

The objective of pattern based action recognition in the CogWatch system is to classify a 
sequence of feature vectors measured (using instrumented tools and objects, on-body 
sensors, or a video-based system such as Kinect) while a participant is engaged in a 
particular ADL task, in terms of the sequence of tasks and sub-goals that he or she is 
performing.  This information is used to determine the stage in the task that has been 
reached and whether or not the task is being executed in a way that is likely to result in 
success.  If not, the system should provide sufficient information to enable useful cues and 
feedback to be provided for the participant. 

6.2 Hidden Markov Models (HMMs) 

HMMs are a generic, statistical method for modelling time-varying sequential data.  They 
were originally applied to pattern recognition in the context of automaticspeech recognition 
(ASR).   

In general, HMMs represent a compromise between accurate modelling of the physical 
properties of a particular signal and mathematical and computational tractability.  At any 
given time an HMM assumes that the signal that it is modelling is in one of a finite number 
of stationary states, that the transitions between these states are instantaneous, and that 
the length of time spent in a state is governed by a geometric distribution.  In addition it 
assumes that the elements of the sequence are statistically independent of one another.  
Deviations from stationarity in a state are treated as noise and modelled with a probability 
density function associated with the state (the ‘state output PDF’).  Set against these 
constraints is the existence of a mathematically rigorous and computationally tractable 
training algorithm, the Baum-Welch or Forward-Backward algorithm (Baum et al. (1970)) for 
estimating HMM model parameters directly from data.  There is also an established 
decoding algorithm, the Viterbi algorithm, for recognising a given signal in terms of the 
outputs of a sequence of HMMs. 

The extent to which the HMM assumptions are appropriate for a particular signal depends 
on the properties of that signal.  For example, despite their success in ASR, it is clear that 
the HMM assumptions are not particularly appropriate for speech signals, and this has 
resulted in the investment of considerable research effort into the development of alternative 
models.  However, so far none of these alternatives have been able to demonstrate 
equivalent ASR performance to HMMs.  It seems that for ASR the limitations of the HMM 
modelling assumptions are more than offset by these other computational considerations.  
The extent to which signals in the CogWatch project will match the HMM assumptions is 
unknown.  However, it is clear that the HMM assumptions are well-matched with the outputs 
of an eye-tracker (Cooke and Russell (2008)) and it is likely that similar trade-offs between 
modelling accuracy and computational utility will apply to CogWatch signals. 

Pioneering work on the application of HMMs to ASR is reported in Baker (1975), which 
describes the development of the original “Dragon” system at Carnegie Mellon University, 
and in Bahl and Jelinek (1975) who describe early research at the IBM speech research 
group.  Initially, HMMs were restricted to sequences of discrete symbols, and their 
application to a continuous signal such as speech required some form of quantization.  This 
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changed in 1982 when Liporace extended the Baum-Welch HMM parameter estimation 
algorithm to HMMs with Gaussian Mixture Model (GMM) states (Liporace (1982)). However, 
the application of HMMs to speech recognition was only popularised in the mid-1980 by 
Rabiner and his colleagues at Bell Laboratories (Rabiner et al. (1985)).  In 1989 Cambridge 
University released the first version of the HMM Toolkit, HTK, (Young (1994)).  This is a 
library of C functions that implements the set of tools needed to develop a HMM based 
speech recognition system (including the Baum-Welch and Viterbi algorithms).  Its most 
recent versions are used in speech recognition and more general pattern recognition 
research laboratories across the world. 

Over the past 20 years there have been many advances in HMM technology, including the 
development of discriminative training algorithms (e.g. Jiang (2010)), adaptation algorithms 
for model parameter estimation from limited data (e.g. Gauvain and Lee (1994)), noise 
compensation techniques (e.g. Vaseghi and Milner (1997)) and the emergence of HMM-
based approaches to modelling parallel asynchronous processes (Ghahramani and Jordan 
(1997)).  It does not appear that these developments have been applied to the CogWatch 
action recognition application. 

From the perspective of the CogWatch application it is also significant that there is an 
established HMM algorithm for decoding continuous signals, where the boundaries between 
different events (sub-goals and tasks) are not known (Bridle et al. (1982)) and that this 
algorithm can operate continuously in real-time using a technique called Partial Traceback 
to free memory as soon as the decoding decision becomes unambiguous (Spohrer et al. 
(1980)). 

The action recognition component of the first CogWatch prototype system will be based on 
HMMs. 

6.3 Application of HMMs to action recognition 

6.3.1 Unit selection 

Unit selection refers to the choice of the basic units that will be modelled by HMMs in the 
action recognition system.   

CogWatch deliverable D1.1 “Report on Scenarios” includes a hierarchical tree description of 
the tea making task.  This is reproduced here for convenience as Error! Reference source 
not found..  The tree divides the goal (“Prepare a cup of tea”) into five sub-goals: 

 “Heat water”,  

 “Add water in the cup”,  

 “Put tea bag in the cup”,  

 “Remove tea bag from cup”,  

  “Take a sip of tea”).   

Each sub-goal is further divided into a set of tasks.  For example, the sub-goal “Add water in 
the cup” involves the tasks: 

 “Add water in the cup”  

o “Pick cup”,  
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o “Place cup next to kettle”  

o “Tilt the kettle until cup is full”.   

Finally, each task is expressed as a set of sub-tasks.  For example: 

 “Add water in the cup”  (sub-goal) 

o  “Tilt the kettle until cup is full” (task) 

 “Grasp handle” (sub-task) 

 “Push forward until water pouring” (sub-task) 

 “Keep still until cup is full” (sub-task) 

 “Tilt back the kettle” (sub-task) 

 

In CogWatch prototype 1 we will have the option of applying HMMs at the task or sub-goal 
level.  This is analogous to phone-level or word-level modelling in ASR. 

6.3.1.1 Task-level HMMs 

In a task-level HMM system, sub-goals are expressed as one or more sequences of tasks in 
a text configuration file analogous to the ‘pronunciation dictionary’ in a standard HMM-based 
ASR system.  Sub-goal level HMMs are then constructed by combining task-level HMMs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Action-level HMM for “tilt the kettle until cup is full” 

For example, a HMM of the task “Tilt the kettle until cup is full” might consist of four states 
s1,...,s4, where each state si is associated with a PDF bi defined on the set of all sensor 
outputs, and, for example, b1 describes the distribution of feature vector values that are 
output when the handle of the kettle is grasped.  Figure 11 shows an intuitive representation 
of an HMM for the task “tilt the kettle until the cup is full”.  The initial and final states are “null 
states” whose function is to facilitate connectivity between models.  In reality the parameters 
of the probability density function (PDF) associated with each state would be learnt from 
data automatically, so that such a literal interpretation of the model states is generally not 
accurate.  The PDFs associated with the states will be Gaussian mixture models (GMMs).  
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The number of states, the connectivity between states, the number of GMM components 
and the parameter values will be determined empirically. 

An advantage of constructing sub-goal models from task models, rather than modelling sub-
goals directly as sub-goal-level HMMs, is that it may enable parameter sharing and 
therefore reduce the amount of training data required.  For example, in Error! Reference 
source not found. the “add water in the cup” and “take a sip of tea” sub-goals both begin 
with the task “pick up cup” and therefore share the same model parameters.  More generally, 
different “pick up object” tasks, where, for example, the object could be a cup or a jug, 
would also share parameters. 

In large vocabulary ASR systems, with vocabularies of tens or thousands of words, the sub-
word based approach is essential because it is not practical to estimate the parameters of 
such a large number of word-level models.  In fact, parameter estimation for systems with 
many thousands of parameters is a major issue for ASR.  However, for the present 
application the ‘vocabulary size’ is much smaller, with of the order of just 10 sub-goals.  
Hence sub-goal level modelling is a viable option. 

6.3.1.2 Sub-goal level HMMs 

In a sub-goal HMM based activity recognition system, each sub-goal is modelled using its 
own dedicated HMM.  These HMMs will typically be more complex, with more states than a 
task-level HMM.  In fact an initial estimate of the number of states required for a sub-goal 
level HMM might be three times its number of component tasks. 

The main advantage of sub-goal level HMMs over task-level HMMs is that the HMM can 
explicitly model the interaction between the tasks within the sub-goal.  Specifically, the 
precise set of movements and object-interactions that a participant uses to execute an task 
will, in general, depend on the preceding and following tasks.  In ASR the solution to this 
problem is to use context-sensitive phone-level HMMs.  The most common approach is to 
use so-called “triphone HMMs” (a model of the acoustic realisation of a phone in the context 
of the immediately preceding and following phones).  The analogy for activity recognition 
would be to build a different task-level HMM depending on the immediately preceding and 
following tasks.  If the number of tasks is N this results in up to N3 context-sensitive task-
level HMMs, but if N is small (as is the case for activity recognition) this may not be an issue. 

On balance, for initial activity recognition systems sub-goal HMMs would seem to have 
advantages, since no assumption needs to be made about the extent of contextual 
influence on the realisation of tasks. 

6.3.2 Action recogniser architectures 

A number of different recognizer architectures are possible, each with its own advantages 
and disadvantages with respect to sub-goal modelling.  The issues that determine choice of 
architecture are the same as those discussed in Section Error! Reference source not 
found. concerning the limitations off the hierarchical task description, namely the ordered or 
partially ordered nature of a set of sub-goal that instantiate a goal. 

6.3.2.1 Sensor integration (early integration) 

The simplest approach, referred to as “sensor integration”, “sensor fusion” or “early 
integration” is represented in Figure 12.  At each time instant, the full set of sensor outputs is 
combined in to a single feature vector and processed using a single HMM-based decoder. 
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Figure 12: Early integration of sensor information 

The advantage of this approach is that it is simple, and that it explicitly captures correlations 
between the outputs of all of the sensors attached to all of the objects.  For example, when 
milk is poured into a mug, the feature vectors presented to the recogniser will include  
information from the RFID tag attached to the jug (indicating close proximity of the hand to 
the jug) and the accelerometer in the CIC attached to the jug (indicating that the jug has 
been tilted) and information from the FSRs in the CIC attached to the mug (indicating an 
increase in weight due to the mug filling with milk) and possibly, depending on the range of 
the RFID sensor, from the RFID tag attached to the mug, indicating proximity of the hand to 
the mug.   

The disadvantage of sensor integration is that the recogniser expects the input to 
correspond to an ordered sequence of individual sub-goals.  This may be the case in tea 
making, and it will certainly be the case if the participant uses only one hand..  However, if 
the participant uses both hands, or more than one participant is involved, it is possible for 
two sub-goals to be executed either at the same time, or at least such that the time intervals 
over which they are executed overlap.  In this case the scheme depicted in Figure 12 will not 
suffice. 

For example, during the sub-goal “pour milk into cup”, the recogniser will expect a sequence 
of readings from the sensors attached to the jug, corresponding to the jug being lifted, 
translated and then tilted, and readings from the mug corresponding to a gradual increase in 
weight..  It will expect null (noise) outputs from all of the other sensors. If during this sub-
task the sugar container is moved, either by the participant with his or her other hand or by 
another person, the unexpected readings from the sugar container sensors will cause 
confusion. 

A potential solution would be to model pairs of sub-goals, but they would need to take place 
in synchrony, and this is not generally the case.  Also, modelling pairs would effectively 
mean squaring the number of sub-goals, and this would have computational implications. 

In summary, sensor integration is the simplest approach and is acceptable if the task is 
executed as an ordered sequence of sub-goals. 
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6.3.2.2 Late integration (object level) 

An alternative approach, referred to as “late integration” or “decision fusion” is represented 
in Figure 13.  In this scheme the outputs from the set of sensors attached an individual object 
are processed together but separately from those attached to all other objects.  Each object 
has its own dedicated pattern recognition system.  The outputs of the separate classifiers 
are combined in the task model after classification. 

 

Figure 13: Late integration (object-level fusion) 

 

Late integration is much more flexible than sensor-level integration, because all of the 
objects are treated independently.  However, this is also its main weakness.  Returning to 
the example of pouring milk into the mug from Section 6.3.2.1, in the case of late integration 
the pattern recognition system responsible for the mug will receive data from the mug’s 
sensors indicating proximity of the hand to the mug (depending on the range of the RFID 
sensor) and from the FSRs in the CIC indicating increasing weight.  This data is much less 
ambiguous if the recogniser is also aware of what is happening to the jug, but in object level 
late integration the sensors on the jug and those on the mug must be interpreted 
independently, leading to a potential increase in ambiguity. 

These types of issues have arisen elsewhere and potential solutions have been proposed.   

For example, in Parallel Model Combination (PMC) (Gales and Young (1996)) a noisy 
speech signal is treated as the combined output of two HMMs, one modelling speech and 
one modelling noise.  A combination function describes how the speech and noise are 
combined and the probability of a particular feature vector is computed by integrating over 
all possible combinations of speech and noise that could have resulted in that vector.  This 
method has been applied to the integration of audio and visual speech signals by Tomlinson 
et al. (1996). 

More generally, Factorial HMMs (Ghahramani and Jordan (1997)) provide a framework for 
including probabilistic constraints between sets of parallel HMMs to try to characterise the 
dependencies between them.  Bayesian Networks (BNs) (Jensen (1997)) and Graphical 
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Models (Lauritzen (1996)) provide a more general framework for characterising these types 
of dependencies. 

 

Figure 14: Late integration (sub-goal level fusion) 

6.3.2.3 Late integration (sub-goal level fusion) 

An alternative to the object-level late integration scheme described in Section 6.3.2.2 is to 
group together the outputs of sensors associated with objects that are involved with in a 
particular sub-goal and to employ a set of parallel sub-goal level recognisers.  The sub-goal 
models could be constructed from task-level models or be built explicitly at the sub-goal 
level, as discussed in Section 6.3.1.   

For example, the model for “pour milk into the jug” would take as its inputs the set of all 
sensors associated with the milk jug and the mug.  The advantage of sub-goal level 
modelling would be a better ability to model the interaction between the two objects, for 
example the outputs of the sensors when the jug comes into proximity with the mug and 
when the jug is tilted and milk is transferred from the jug to the mug.  Sub-goal level late 
integration is represented in Figure 14. 

Rather than thinking of the parallel components in Figure 14 as ‘recognisers’ it is more 
accurate to think of them as ‘sub-goal detectors’.  Each detector continuously monitors the 
outputs from the sensors related to its sub-goal, looking for evidence that the sub-goal has 
been completed.  In principle this could be triggered by the probability of the sub-goal model 
exceeding a threshold.  However, threshold-based approaches tend to be sensitive to noise 
and other variability.  A more robust approach is to run the sub-goal model in competition 
with a “background” model of the expected sensor outputs when the sub-goal is not being 
executed. 

6.3.2.4 Background model 

Each of the recognition schemes in Sections 6.3.2.1, 6.3.2.2 and 6.3.2.3 will require one or 
more ‘background models’ (BMs).  The function of the BM is to accommodate the sensor 
information that is input to the recogniser when the object that the sensor is attached to is 
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not involved in executing a sub-goal.  This will include the object being ‘at rest’, but might 
also include the object being ‘toyed with’ by the participant. 

6.4 Choice of HMM architecture for first CogWatch prototype 

The discussions above, and in particular the need to be able to cope with partially ordered 
sets, rather than sequences, of sub-tasks, point towards object or sub-goal level late 
integration as the modelling paradigm for the first CogWatch prototype.  In addition, given 
that the number of sub-goals is relatively small, and the disadvantages of ignoring the way 
in which tasks interact within a sub-goal, sub-goal level late integration is the preferred 
option (Section 6.3.2.3). 

Regarding unit selection, since the number of sub-goals is small and the interactions 
between tasks within a sub-goal may be complex, we propose to apply HMMs initially at the 
sub-goal level (Section 6.3.1.2). 

It is important to note that the exact decision about the level of integration and modelling 
unit does not affect the development of the CogWatch HMM decoder at this stage, since the 
same basic architecture can be configured to accommodate any of these options. 
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7. SPECIFICATION OF THE FIRST COGWATCH PROTOTYPE 

This section summarises the choices and decisions recommended in the previous sections 
and gives a description of the envisaged first CogWatch prototype system. 

7.1 System inputs 

The inputs to the system will comprise measurements from sensors attached to the tools 
and objects involved in the task, plus hand-location derived from Kinect. The precise set of 
sensors will be agreed with WP2 at the end of July 2012. 

7.1.1 The CogWatch instrumented coaster  

Each substantial object in the tea making task will be fitted with a CIC (Section 3.3).  This 
comprises a 3-axis accelerometer plus three FSRs.  Communication between the CIC and 
the AAR system will be wireless via Bluetooth. 

7.1.2 RFID tags 

RFID tags will be attached to all items, including those which are too small to support a CIC.  
RFID antennas, attached to RFID readers, will be worn on one or both of the participant’s 
wrists. 

7.1.3 Kinect 

The Kinect system will supply the 3D locations of the participant’s hands. 

7.2 Automatic action recognition (AAR) 

7.2.1 Specification of the HMM-based AAR system 

The AAR system will be based on sub-goal level fusion (Section 6.3.2.3) of sub-goal level 
HMMs (Section 6.3.1.2). 

7.3 The Task Model 

7.3.1 Specification of the MPD-based TM 

The prototype TM will be a MDP (Section 5.2.6), whose structure and parameters are 
determined from HTA applied to a hierarchical description of the tea-making task (Section 
5.2.5). 
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8. CONCLUSIONS 

This report discusses the issues that are relevant to the development of an automatic 
activity recognition system in the context of the CogWatch project.  Its main purpose is to 
explain the rationale for the decisions that have been made regarding the design of the first 
prototype system, which is scheduled to be operational in month 16 of the project. 

The report begins with a review of the tea-making task, which is the application chosen for 
the first prototype.  A hierarchical tree description of the task (taken from CogWatch 
deliverable D1.1) is taken as the task definition.  This description of the task is a reference 
that is referred to frequently in the discussions of action recognition models and task models 
which follow. 

Section 3 discusses the types of instrumentation that are potentially available to the 
prototype CogWatch system.  These include the CIC (comprising an accelerometer and 
three FSRs), RFID tags, and 3D hand location estimated using the Kinect system.  The 
utility of each of these sensors for the tea-making task is discussed in Section 3.4.  The 
sensors will be connected to the CogWatch system wirelessly via Bluetooth.  The final set of 
sensors that will be used in the prototype will be agreed between WP2 and WP3 in July 
2012. 

The choice of the TM is discussed in Section 5. The strengths and weaknesses of various 
candidate TMs are considered.  These include the psychological models proposed by 
Cooper and Shallce, and Botvinick and Plaut; the HTA model from ergonomics, the 
automated probabilistic models of everyday activities (AM-EvAs) that are being developed 
at TUM, and MDPs and POMDPs.  For the first prototype system, the CogWatch TM will be 
based on MDPs, whose structure and parameters are determined using HTA.  However, it 
is expected that future versions of the CogWatch TM will be data-driven models based on 
AM-EvAs. 

Section 6 discusses the design of the first prototype CogWatch AAR system.  The task of 
AAR is to interpret the sequences of measurements from the sensors (attached to the 
objects and tools involved in the task and to the participant’s body) in terms of the tasks and 
sub-goals that the participant is performing.  HMMs are chosen for this task, because they 
are an appropriate technology for real-time processing of sequential data and because 
many of the issues that arise in the context of the CogWatch application have already been 
addressed for HMMs in the context of speech recognition.  However, the chosen 
architecture of the HMM system, namely parallel modelling of separate sub-goals using sub-
goal level HMMs, is novel from the perspective of speech recognition. 

The final specification for the prototype system is summarised in Section 7. 
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