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EXECUTIVE SUMMARY 

This report describes the development of predictive models in the CogWatch project.  The 
report is in two parts.  The first part, sections 2 and 3, describes the technology that 
underpins the development of the task model (TM) in P1.2, for the tea-making task, and 
which will be included in P2 for the tooth-brushing task.  The second part, section 4, 
describes psychological experiments aimed at measuring the extent to which knowledge of 
body kinematics and gaze can be used to recognise and predict errors in the tea-making 
task. 

The purpose of the TM is to monitor a user’s progress through the task, to detect errors and 
to provide sufficient information to the CogWatch system for useful cues to be created.  A 
number of alternative psychological and mathematical models were considered for the 
CogWatch TM, and the rationale for choosing a Markov Decision Process (MDP) was 
presented in deliverable D3.3.1.  An MDP-based TM for tea-making has been developed at 
UOB using a hierarchical description of the task.  The TM is implemented in Python and has 
been fully integrated into the C# environment of the CogWatch system.  In addition, a 
program was written to simulate a user of the system (the ‘SimU’) based on statistics of sub-
goal sequences observed in trials of patients and healthy controls.  The SimU allowed a 
substantial  number of ‘experiments’ to be conducted to evaluate the TM.  The evaluations 
are in terms of the user task completion rate as a function of the accuracy of the action 
recognition (AR) system, and the compliance of the user (i.e. whether the user follows the 
cues created in response to the TM outputs).  For example, with an AR error rate of 10% 
the TM achieves a user completion rate greater than 90%. 

Some degree of AR error is inevitable.  Therefore the most recent research has focussed on 
developing a TM that is robust against such errors.  The new TM uses a Partially 
Observable MDP.  The key difference between the MDP and POMDP TMs is that while the 
MDP maintains a single estimate of the state of the user in the task, the POMDP ‘belief 
state’ is a distribution over all of the MPD states.  Experiments have shown that the 
POMDP-based TM can support user task completion rates of 90% with AR error rates 
greater than 20%. 

Section 4 describes experiments conducted at TUM to measure the relationship between 
action errors in the tea-making task and user kinematics and gaze.  The objective is to 
provide the psychological basis for incorporating this type of information for error prediction 
in future TMs.  Sixty-seven trials were conducted, of which 41 were performed by controls, 
16 by patients with right brain damage (RBD) and 10 by patients with left brain damage 
(LBD).  During trials subjects wore a SMI-ETG eye tracking device and their movements 
were tracked using the Qualysis system.  The data streams were synchronized, segmented 
into sub-goals, and errors were categorized according to the scheme proposed by Hughes 
et al. (2013).  Analyses were conducted on segments exhibiting errors for error detection, 
and on the previous segment for error prediction. 

The main conclusions of the study are that error recognition and prediction based on 
monitoring the subjects hand kinematics does not appear to be viable.  However, fixation 
patterns and fixation times do have the potential to support the recognition and prediction of 
errors. Since gaze leads action, fixations could be used to predict following actions and 
even errors. Incorporation of eye-tracking and an automatized fixation analysis into the TM 
could provide a valuable contribution in recognizing and predicting errors. 
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1. INTRODUCTION 

The EU CogWatch project is concerned with cognitive rehabilitation of stroke patients who 
suffer from apraxia and activity disorganisation syndrome (AADS).  The purpose of the 
project is to develop and clinically evaluate interactive technology that can monitor a 
patient’s progress through a task, detect when he or she has made an error, and provide 
output that can usefully be embodied in a patient cue.  From a technology perspective this 
raises two challenges.  The first is automatic action recognition (AR), the ability of the 
system to automatically recognise the patients’ individual actions.  The CogWatch AR 
systems is based on statistical (hidden Markov) modelling of actions, using data from 
instruments attached to the objects involved in the task. Action recognition in the CogWatch 
system is described in deliverable D3.2.2.  The second challenge is task modelling, which is 
the ability to use the results of AR to monitor the patient’s status in the task, and given that 
status, to identify and predict errors. 

This report describes the development of predictive models in the CogWatch project.  The 
report is in two parts.  The first part, Sections 2 and 3, describes the technology that 
underpins the development of the task model (TM) in P1.2, for the tea-making task, and 
which will be included in P2 for the tooth-brushing task.  The initial TM, based on a Markov 
Decision Process (MDP) is described and interpreted in terms of the CogWatch task.  
Experiments are described which use a simulated user to investigate the resilience of the 
MDP-based TM to AR errors and to non-compliance of the user to cues.  The results 
indicate that task completion rates of 90% can be achieved provided that the AR error rate 
is no greater than 10%.  Motivated by these results, a new TM based on a Partially 
Observable MDP (POMDP) is described.  In a POMDP the user “belief state” is modelled as 
a probability distribution across all user states, leading to improved robustness against AR 
error. 

The second part of the report, Section 4, describes psychological experiments aimed at 
measuring the extent to which knowledge of body kinematics and gaze can be used to 
recognise and predict errors in the tea-making task.  Kinematic and gaze data are captured 
using Qualysis system and an SMI-ETG eye tracking device, respectively.  The results 
suggest that error recognition and prediction based on monitoring the subjects hand 
kinematics is not viable.  However, fixation patterns and fixation times do have the potential 
to support the recognition and prediction of errors. Fixations could be used to predict 
following actions and even errors. These results indicate that incorporating eye-tracking and 
automatized fixation analysis into a future TM could provide a valuable contribution to error 
recognition and prediction. 
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2. ACTION PREDICTION IN THE COGWATCH SYSTEM 

2.1 Action prediction in the first CogWatch prototype 

Action prediction in the first CogWatch prototype is the responsibility of the Task 
Model (TM).  The role of the TM relative to the other components of the Action 
Recognition and Prediction (ARP) sub-system is shown in figure Figure 2. 

Recall that the task for the first prototype is tea-making.  The tea-making task is 
described fully in CogWatch deliverable D1.1 “Report on scenarios”. Figure 1 (taken 
from D1.1) shows a hierarchical tree based description of one of the tea-making 
tasks (black tea without sugar).  It is included here for completeness. 

The root of the tree is identified with the whole task (“prepare a cup of tea”).  At the 
next level this is broken down into “sub-goals” (for example, “heat water”).  These 
sub-goals are broken into “tasks”, which in turn are divided in to “sub-tasks”.  In 
CogWatch the tea-making task is modelled at the sub-goal level. 

 

 

Figure 1: Hierarchical tree representation of the “black tea without sugar” version of the tea 
making task (from D1.1 Report on scenarios) 
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2.2 Outline of the system 

When the user manipulates the objects involved in a sub-goal of the tea making task, 
his or her actions cause changes in the outputs of sensors attached to those objects.  
The sub-goal is recognised from these sensor outputs by the Action Recognition 
(AR) system.   

The AR in the first prototype is described in detail in D3.2.2 “Report on data analysis 
for action recognition II”. Briefly, the AR is based on statistical models called hidden 
Markov models (HMMs).  The AR system is configured as a parallel set of real-time 
detectors, one for each sub-goal.  This parallel structure was chosen to allow 
multiple sub-goals to occur simultaneously or at least in overlapping time (which 
would not be possible in a conventional Viterbi decoder of the type typically used in 
automatic speech recognition).  Each detector contains a sub-gaol model (HMM) 
and a “toying” model.  The role of the toying model is to characterise the range of 
sensor outputs that occur when the user is not executing the sub-goal.  Each 
detector runs a real-time Viterbi decoder, which decides whether the current input is 
best described as an instance of the sub-goal or as toying.   

The inputs to the TM are sub-goal labels that are output from the AR system.  This 
information is passed to the TM via the VTE.   

 

Figure 2: The Action Recognition and Prediction (ARP) sub-system of the CogWatch system. 

The purposes of the TM are: 

 To estimate the stage that the user has reached in the execution of the task, 

 To detect whether or not the user has committed an error, and 

 To predict the next sub-goal that the user will execute. 

If the TM detects that the user has made an error, then the outputs from the TM are 
“cue prompts” that are passed to the part of the VTE Information Handler that is 
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responsible for error processing and cueing.  If an error has not been detected then 
the TM sends an indication that the task has been completed successfully.  In the 
event of an error the VTE Information Handler may or may not send a cue to the 
user, based on the information from the TM. 
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3. THE COGWATCH TASK MODEL 

3.1 Description of the MDP-based Task Model 

The TM in CogWatch prototype 1 is based on a Markov Decision Process (MDP).  
The rationale for choosing an MDP-based TM is explained in D3.2.1. 

3.1.1 Markov decision processes (MDPs) 

3.1.1.1 Formal definition 

Formally, a MDP is a 4-tuple < S , A, Pa, Ra >, comprising the following components: 

 A finite set S of N states,  

 A finite set A of actions,  

 For each pair of states s1 and s2 in S and action a,  

 Pa(s1,s2) is the transition probability of being in state s2 at time t+1 given state s1 at 
time t and that action a was taken  

 Ra(s1,s2) is the corresponding reward/cost  

3.1.2 Interpretation of MDPs in the context of tea-making 

3.1.2.1 The MDP state space 

In the context of the tea-making task, a state of the MDP is a sequence of sub-goals that 
may lead to successful tea-making. Consequently, even for a small number of sub-goals the 
MDP state space is potentially very large. It is kept finite by restricting the number of 
repetitions of each sub-goal that are permitted.  The size of the state space is further 
controlled by identifying states that differ only in the number of times that a particular sub-
goal has been executed (assuming that it has been executed at least once).  

3.1.2.2 The MDP action space 

The “actions” component of the MDP consists of the set of sub-goals. 

3.1.2.3 The MDP transition probabilities 

In the MDP TM, the probability of moving from the current state to another state depends on 
the current action.   

For example, if the current state s1 corresponds to the sub-goal sequence a1,…,aN and the 
AR outputs sub-goal a, then if s2 = a1,…,aN, a is a valid MDP state (i.e. a1,…,aN, a is a valid 
sequence of sub-goals that can result in successful tea-making) the MDP makes a transition 
from state s1 to s2 with probability 1.  If a1,…,aN, a is not a valid state then an error has 
occurred and this information is communicated to the VTE error-handling component of the 
system. 
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Figure 3: Example of a state transition in the MDP-based Task Model 

 

3.1.2.4 The Cost Function 

The cost function is a mechanism to incorporate human judgment about the 
importance of different types of behaviour into the MDP. In our case, we combined 
two types of functions:  

i. one that is based on the time taken to complete the task and hence allows 
the MDP to find the fastest strategy, and  

ii. another that takes into account the way participants successfully perform 
the task and clinicians’ preferences. Specifically, we ranked the sub-goals 
according to the clinicians’ priorities, and then associated the highest 
costs (via the cost function) with failure to implement these most important 
sub-goals.  Consequently, the MDP optimal strategy will prioritize sub-
goals that the clinician believes are most important. 

Both of these factors are taken into account because the fastest strategy may be 
valid, but is not necessarily the one that is most psychologically plausible, in the 
sense that it may not be a strategy that a patient would be likely to pursue or that a 
clinician would expect. Later we will demonstrate that when the cost function (i) is 
combined with relevant knowledge from users and clinicians (i.e., cost function (ii)), 
it allows the TM to generate more meaningful and efficient strategies during the 
task.  

When using the cost function (i) only, the TM’s strategies will be referred as Non-
Psychologically Plausible; when using the combination (i) and (ii), the TM’s 
strategies will be referred as Psychologically Plausible. Other standard methods will 
be applied in the future with the aim to compare the TM’s performance to other 
assistive systems.  
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The cost function includes: 

 A penalty based on the time taken to complete the sub-goal. 

 A penalty for non-fatal deviations away from the optimal strategy.  This is a penalty 
which is incurred each time the subject executes a sub-goal in a particular state, 
which is different from the optimal plan or strategy at that state. 

 A penalty for repeating a sub-goal (where repetition is not a fatal error).  For example 
if the subject executes a sub-goal “add milk”, then executes one of more other sub-
goal, and then executes a second “add milk”, this might incur a penalty even though 
it is legal. 

3.1.2.5 The Optimal Strategy 

In the context of MDPs, a strategy is a function π: S → A.  In other words, for each 
state s, π(s) is an action (sub-goal). 

Given the optimal strategy π* a function Vπ
*  can be defined on the state space S 

such that for any state s, Vπ
*(s) is the minimum accumulated cost of completing the 

task given that the participant is currently in state s and follows the optimal strategy 

π*. 

The cost functions that are used to compute the optimal strategy are based on 
training material collected during trials and on human intuition.  The objective is that 
the cost function should have the property that large costs are indicative of likely 
task failure, so that cues can be provided in a timely and psychologically plausible 
manner.  The cost for each sub-goal should be interpreted as the cost for failure to 
complete that sub-goal.  There costs can be based on human intuition, by consulting 
a clinician to find out which tasks have highest priority, of by analysing training data 
to find out which sub-goals are given priority in trials. 

The optimal strategy is pre-computed using the Monte Carlo Algorithm described in 
(Levin et al. 2000). It is an iterative algorithm that looks for the action from the Action 
Space that costs the less to be done after each state contained in the state space. It 
begins by a guess of what are the best next actions, then improve this guess loops 
after loops based on the cost functions that are used. 

3.1.2.6 The Target Plan 

The target plan is a strategy chosen and defined by a human expert, for example a 
clinician that selects the order in which the sub-goals should be executed, among a 
specific list of preferred sequences. 

This target plan can be selected by hand via the clinician’s screen before the task 
starts. The information is then passed to the TM for it to retrieve the corresponding 
strategy for which it would have had been trained beforehand.  
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3.1.3 Structure of the MDP-based TM in CogWatch 

The complete system is shown in Figure 4.  In this figure, au and a denote the user’s 
action and the TM’s strategy, s is the user’s state, ER is the error recognition 
module, and the circumflex indicates an estimate.  Error − ID is the user’s error type. 

The system comprises: 

 A set of sensorized objects (specifically a mug, kettle, jug, each fitted with a 
CogWatch Instrumented Coaster (CIC)),  

 A HMM-based AR system,  

 A Markov Decision Process based TM, and  

 A Prompting System.  

The system works as follows: First, the patient chooses the type of tea that he or 
she wants to make from four options (black tea, black tea with sugar, tea with milk, 
tea with milk and sugar).  This information is passed to the TM and the correct MDP 
is selected along with the optimal strategy which is computed in advance. 

The patient’s behavior is detected by monitoring the sensors attached to the objects 
used during the task. This data is communicated wirelessly to the AR whose aim is 
to recognise what sub-goal the patient has performed. The AR outputs are passed 
to the TM, which is in charge of planning and of monitoring the patient’s progress 
through the task.  

In other words, each time the patient performs an action (sub-goal), the AAR outputs 
a sub-goal label, and the TM records it in order to determine the patient’s state (i.e, 
its understanding of what the patient has achieved so far). The state s is passed to 
the Action Policy module that plans what should be done next (for example, what 
action should be suggested based on the “optimal strategy”) in order to assist he 
patient.  
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Figure 4: Structure of TM in CogWatch. 

 

In contrast to most previous AI planning systems, we also had to implement an Error 
Recognition (ER) module. This module analyzes the state s in order to identify 
potential errors in the patient’s plan. Finally, the TM outputs a recommendation for 
the next best action, and if needed alerts the Prompting system that an error has 
occurred. The Prompting System uses a table designed by clinicians to map the 
output from the TM to the type of cue that should be retrieved.    

Because CogWatch is a rehabilitation system the ER acts as a kind of filter.  Each 
stage of task execution corresponds to a state s of the MDP and is associated with 
an optimal strategy π(s).  In an assistive technology it might be appropriate to 
communicate this strategy to the patient at each point in the task.  However for a 
rehabilitation technology this is not the case.  The decision about whether or not to 
convert the optimal strategy into a cue to send to the patient is made by 
psychologists and coded into the ER system. 

3.2 Implementation and Testing 

The initial evaluation of the Task Model consisted of measuring its ability to suggest 
a valid strategy at each stage of task execution.  Specifically, the utility of the ER 
system is not measured here (in fact, the success or otherwise of the ER system 
can only be measured through repeated trials with patients).  In other words, in the 
present evaluation, success is measured in terms of the TM’s ability to suggest an 
appropriate next action and this is not compromised by the ER system’s decision of 
whether or not to pass it to the patient in the form of a cue. 

3.2.1 The Simulated User (SimU) 

To reliably evaluate the TM’s action policy, a very large number of interactions 
between participants and the system are necessary.  Clearly this cannot be 
achieved with real human users.  Instead, to complete the evaluation, we created a 
simulated impaired user, SimU. 

The SimU’s behaviour is based on observed sequences of sub-goals from fifty-two 
control and cognitively impaired participants, aged between 21 and 82, who 
completed four types of tea making (black tea, black tea with sugar, white tea, white 
tea with sugar) 100 times.  These sequences were used to estimate sub-goal 
transition probability statistics.  Specifically, the statistics that were estimated were: 

i. The probability P0(a) that a is the first sub-goal executed by the patient, and  

ii. The transition probabilities P(a1 | a2) that the patient executes sub-goal a1 
having (immediately) previously completed sub-goal a2. 

The SimU generates sequences of sub-goals randomly according to these 
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probabilities.  In this way the SimU can execute plausible sequences of sub-goals 
while interacting with a virtualization of the CogWatch system.  

A number of experiments were conducted in which the SimU interacted with the 
simulated CogWatch system.  Factors that were considered included: 

i. The compliancy of the user.  In other words did the simulated user always 
execute the sub-goal that was suggested by the TM (100% compliancy) or 
did the simulated user sometimes ignore the suggestions of the TM (less that 
100% compliancy) 

ii. The psychological plausibility (or otherwise) of the TM’s strategy, which in 
turn derives from the psychological plausibility of the cost function that is 
used in the computation of the optimal strategy. 

The experiments are described below.  In summary they show that the MDP-based 
TM is valid, and that psychologically plausible (PP) strategies are more effective 
than non-psychologically plausible (NP-P) strategies (Jean-Baptiste et al. 2014). 

Figure 5 shows the results of experiments in which the compliance of the SimU was 
varied between 100% (full compliance, SimU always obeys the TM) and 0% (SimU 
ignores the TM), using optimal strategies based on costs functions that ae either 
psychologically plausible (PP) or not psychologically plausible (N-PP), for each of 
the four variants of the tea-making task.  Performance is measured in terms of the 
proportion of trials that result in successful completion of the task. 

3.2.1.1 Effects of SimU compliance and PP and N-PP strategies 

Figure 5 shows The SimU’s task completion rate at varying levels of compliance to 
the Task Model’s strategy. PP and N-PP indicate Psychologically Plausible (PP) and 
Non- Psychologically Plausible (NPP) strategies.   The different tea-making tasks 
are denoted by (a), (b), (d) and (e) and correspond to black tea, black tea with 
sugar, white tea, and white tea with sugar, respectively. 

In Figure 5, we see that if the SimU is 100% compliant to the TM’s strategies, then 
whether the TM outputs a NP-P or PP strategy has no impact on the SimU’s 
performance. This indicates that both the NP-P and PP strategies are equally valid, 
in the sense that if the user follows the TM’s instructions the proportion of successful 
task completions does not depend on whether the cost function used in the 
computation of the optimal strategy was PP or NPP.  

Nevertheless, as soon as the SimU decreases its compliance to the TM’s outputs, 
we can see from Figure 5 (a-b-d-e)) that its success rate is higher when the 
strategies are psychologically plausible than when they are not.  

For example, in Figure 5(a-b), when the SimU follows a N-PP strategy with a 
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compliance of 20% during the task, its success rate is 78%, which is the same as if 
it was ignoring the TM (0% compliance). However, under the same circumstances 
the SimU achieves a task completion rate of 90% with the PP strategy.  We can 
then conclude that if both strategies are valid, the P.P one is optimal compared to N-
P.P. To make a parallel with a realistic situation, the P.P strategy can be seen as a 
familiar one; a strategy able to take into account the ways a clinician would perform 
the tasks or the optimal ways the patients are used to perform when they succeed. 
So, with P.P strategies, when the user completes the task and accepts to comply, 
the TM succeeds to redirect the user on the most efficient ways of succeeding the 
task (Jean-Baptiste et al., 2014). 

On the other hand, even if a N-PP strategy is always correct, it does not take into 
account the patient’s habits, which then leads to more user failures. Indeed, the 
impact of familiar and unfamiliar sequences on success rate is highlighted in (De 

Kleine and Van der Lubbe, 2011) and (Graybiel 1998).  Familiar sequences are easier 
to execute and require less effort and energy, as they are controlled through a sub- 
cortical structure where the sequence is reduced to a single unit. In contrast in the 
case of novel sequences or sequences that diverge from the familiar, additional  
cortical mechanisms (more effort, higher demands on resources) are needed. 

 

Figure 5: SimU success rates at varying levels of compliance to the TM’s strategy.  

 

3.2.1.2 Implementation 

The MDP-based TM has been implemented in Python and has been tested 
successfully via simulation, and with real participants (Pflügler et al. 2014) for tea-
making.   
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Eight patients and three healthy elderly were involved in the experiments. 

“In the trials that were performed with the CogWatch system, six out of the nine 
participants who committed at least one error were successfully cued and achieved 
the task goal (the selected cup of tea). Two participants did only partly achieve their 
action goal (e.g. too little of certain ingredient) but were still able to prepare the 
selected cup of tea. Only one out of the 11 participants was unable to finish his cup 
of tea due to an irreversible fatal error.” 

The MDP-based TM has also been implemented and updated in order to be 
adapted to a new task: teeth-brushing.  

3.3 Coping with uncertainty – the POMDP-based TM 

A major problem with an MDP-based TM is that it is not well equipped to 
accommodate errors in the output of the AR system, which are almost inevitable.  If 
the system is in state s1 then in a conventional MDP the probability P(s2 | s1, A) of 
moving to state s2 depends on s1 and the sub-goal A that has been executed.  In 
practice, A is unknown and the TM must be satisfied with a, the output the AR 
system when sub-goal A was performed by the participant.   

In this sense the sub-goal is only partially observable, since the true sub-goal can 
only be inferred, and not known, from the recognised sub-goal. Accommodating this 
uncertainty requires an extension of a MDP called a Partially Observable MDP or 
POMDP (Williams et al., 2008). 

3.4 POMDPs 

3.4.1 Formal definition of a POMDP 

Formally, a POMDP is a generalization of a MDP. It is a tuple <S, A, Pa, Ra, 



, Po, b0> 
where: 

 S, A, Pa and Ra define an MDP (section 3.1.1.1).  

 Ω is a set of observations. 

 Po(o, a) is the probability that an agent will observe o ∈ Ω after executing a ∈ A, 

reaching state s . The Po function models the sensor inaccuracy (sensors’ noise).  In 
the case of the CogWatch TM this is the error pattern of the AR. 

 b0 defines the initial belief state, before the patient has executed an action or received 
an observation. In our case, the initial state will always be known (i.e., when a new 
online trial is launched, we consider the state s0 to be empty.).  

3.4.2 Action Prediction and Error Recognition in the POMDP-based TM 

In the MDP-based TM, the TM has no option other than to “believe” the inputs that it 
receives from the AR, and bases its action prediction and error recognition on the sequence 
of sub-goals collected online.   
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By contrast, the POMDP can accommodate the fact that the AR may misrecognise actions. 
Instead of basing its optimal strategy on a single state estimate, the POMDP-based TM 
does this using a probability distribution over all MDP states.  The probability distribution 
over the MDP states is the POMDPs best estimate of where the patient has reached in the 
task.  This distribution is normally referred to as the “belief state”. 

Each time the user performs a sub-goal, the AR outputs an observation. However, in 
addition to this observation, the TM also has knowledge of the AR confusion matrix and 
therefore knows which other actions performed by the user might result in this sub-goal 
being (erroneously) output and the corresponding probabilities.  Using this information the 
TM replaces the current output sub-goal with a probability distribution over all sub-goals.  
Combining this distribution with the current belief state creates the new, updated, belief 
state, which encapsulates the TM’s  understanding of what the user has achieved so far. 
Details about exactly how belief states are updated can be found in (Williams et al. 2005).   

In summary, the advantage of the POMDP-based TM over the MDP-based TM is that by 
using knowledge of the typical patterns of error in the AR and representing its belief as a 
distribution over the MDP states, the POMDP is more resilient to AR error. 

Once the belief state is updated, as for the MDP, the POMDP-based TM’s action policy 
module uses adapted cost functions which, taking into account the uncertainty, help defining 
which next best action should be done by the user, and if an error might have been made. 

3.4.3 The POMDP belief state space and estimating the optimal strategy 

It was noted in section 3.1.2.1 that even for a simple task such as tea-making the MDP state 
space is large but discrete and finite.  However, because its belief states consist of 
distributions over the MDP state space, the POMDP state belief space is continuous and 
infinite.  A key property of the MDP TM is the ability to compute the optimal strategy, so that 
whatever state the patient reaches, the TM can, if needed, suggest the next sub-goal that 
should be performed in order to minimize the cost of completing the task.  For the POMDP 
to be a useful TM it needs to provide similar information for each of an infinite number of 
belief states.  However, the Monte Carlo algorithm used to obtain the optimal strategy for 
the MDP-based TM only works for a finite state space. 

The solution proposed in (Young et al. 2010) is to use clustering to identify a finite set of 
belief states that represent the belief state space in some optimal sense.  The optimal 
strategy is then computed for this finite set of belief states using the MDP Monte Carlo 
algorithm.  Finding the optimal strategy for an arbitrary belief state simply involves finding 
the closest belief state in the finite set and using its optimal strategy.  For convenience, the 
belief states in this finite set will be referred to as “belief centroids”. 

The process of quantizing the POMDP belief state space involves running the simulated 
user, SimU, many thousands of times in order to populate the belief state space (this will be 
a small, complex subset of N dimensional space, where N is the number of MDP states).  
Briefly, each time the simulated user performs a sub-goal a new belief state is created.  The 
distance is computed between this belief state and each of the current belief centroids.  If 
the distance between the current belief state and the closest belief centroid exceeds a 
threshold then the current belief state becomes a new belief centroid. 
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From a clustering perspective, this algorithm is unlikely to be optimal and it would be 
interesting to investigate the application of other clustering algorithms to the creation of the 
belief centroids. 

Once the finite set of belief centroids has been fixed the MDP Monte Carlo algorithm is used 
to estimate the optimal strategy. 

Recent work on the CogWatch project has shown that the choice of the metric (or distance 
function) used to calculate the distance between a belief state and each of the belief 
centroids is important.  By choosing a suitable metric, the robustness of the POMDP-based 
TM to AR errors and patient non-compliance to cues can be improved. 

3.4.4 Implementation and testing 

A POMDP-based TM has been built and tested via simulation for one variation of tea-
making.  The procedure for testing is illustrated in Figure 6. 

 

Figure 6: Procedure for testing the POMDP-based TM. 

As in the evaluation of the MDP-based TM, a simulated user SimU is used to simulate a 
large number of patient interactions with the system.  The SimU is a probabilistic model 
based on the statistics of sub-goal sequences measured in real control and patient trials.   

At each step of a simulated trial, the SimU generates a sub-goal which is input into the AR.  
The AR transforms this input sub-goal into the output sub-goal randomly according to the 
AR error rate and confusion matrix.  This is passed to the TM where it, plus knowledge of 
the AR confusion matrix, is used to update the belief state.  The optimal strategy associated 
with the new belief state is then passed as a cue to the simulated user.  If the SimU is 100% 
compliant then it executes the optimal strategy.  If the SimU is N% compliant then it 
executes the optimal strategy N% of the time, and a randomly chosen strategy (100-N)% of 
the time. 
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From AR error rates of between 0% and 60%, we evaluated the impact of the MDP-based 
TM’s strategies on the SimU’s success rate, in the case where the latter was 100% 
compliant to the TM. From Figure 7, one can see that when the AR’s error rate increases, 
the SimU’s ability to complete the task successfully decreases. 

 

Figure 7: Task completion rate on the simple tea-making task as a function of AR error rate for 
the MDP-based CogWatch Task Model 

This is due to the fact that the MDP-based TM cannot cope with uncertainties related to the 
AR’s outputs. With the MDP, the TM believes that the AR outputs perfectly correspond to 
the SimU’s actions: it does not take into account potential AR action recognition errors. So, 
as we increase the AR error rate, we increase its potential to misrecognize the action 
performed by the SimU.  This increases the probability that the TM has an incorrect 
understanding of the SimU’s history of actions, which then increases the probability that it 
will deliver an incorrect cue to the SimU, who, being  100% compliant, will take the wrong 
action. Consequently the SimU  task failure rate will increase. 

With a POMDP-based TM, the system acknowledges the fact that the AR can make 
mistakes. Instead of considering that the AR’s output directly correspond to the SimU’s 
action, the POMDP-based TM treats it as an observation from a random variable and 
updates its belief state (i.e. its understanding of what the user has achieve so far, which is 
encoded as a probabilistic distribution over the MDP states) according to its understanding 
of the distribution of SimU actions that could give rise to the observed AR output. 

Figure 8 shows a comparison of the task completion rates achieved by the SimU with MDP- 
and POMDP-based Task Models for the simple tea making task. In this case the metric 
used in the quantisation of the POMDP belief state space was correlation distance.  For 
example, it is evident that the task completion rate with an AR error rate of 20% and using a 
POMDP-based TM is better than that achieved with the MDP-based TM and an AR error 
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rate of just 10%.   At 20% AR error rate, the task completion rate for the POMDP-based TM 
is over 90%, compared with less than 60% for the MDP-based TM. 

 

Figure 8: Comparison of SimU task completion rates on the simple tea-making task as a 
function of AR error rate for MDP- and POMDP-based Task Models. 

In Figure 7 and Figure 8, the line labelled “0% compliance” corresponds to what the SimU’s 
success rate is when it performs the trials by itself (i.e. without any help from the TM). We 
can see that at around 13% AR error rate, it is better for the SimU to ignore the cues based 
on the optimal strategy of the MDP-based TM and instead to perform the task by itself, 
according to its own internal model. Thus, we can say that at around 13% AR error rate, the 
MDP-based TM has no practical utility. On the other hand, for the POMDP-based TM the 
same phenomenon does not occur until the AR error rate reaches around 28%. 

We believe that these results have significant practical implications.  In our current AR 
experiments (reported in deliverable D.3.2.2) the AR error rate is typically below 10% and 
therefore within the range that can be accommodated by the current MDP-based TM.  
However, if AR performance degrades when the system is used by patients, or because 
cheaper or fewer sensors are used to instrument the task objects, then it may be possible to 
accommodate the degradation in AR performance by upgrading the MDP-based TM to a 
POMDP-based TM.  Similarly, if the system is applied to a new and more demanding task, 
any increase in AR error rate is more likely to be accommodated with a POMDP-based TM. 

3.5 Summary of the CogWatch Task Models  

Section 3 has described an approach to task modelling based on Markov Decision 
Processes (MDPs), which has been used in the first CogWatch prototype for the tea-making 
tasks.  
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Our experiments have shown that the MDP-based TM integrated into a simulation of the 
current CogWatch System can correctly assist a virtually impaired simulated user to 
complete the task, provided that the AR error rate is not too high.  We believe that similar 
results will be observed when experiments being run with real participants are completed.  

From an architectural and computational point of view, implementing this virtual simulation 
of CogWatch allowed us to validate the TM’s capability to fulfill the requirements needed for 
the system to be a context-aware, intelligent, assistive device.  

Although the first prototype focused on the tea-making task, the TM’s structure flexibility has 
allowed it to be extended to the P2 teeth-brushing task.  

We saw that a limitation of the MDP-based approach is that it is not well-suited to coping 
with ambiguity in its inputs.  In this application ambiguity arises as a consequence of 
classification errors in the AR. A Partially Observable MDPs (POMDP) was proposed as a 
solution to this problem. Results obtained with the POMDP-based TM show how it clearly 
outperforms the MDP-based TM at higher AR error rates.  
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4. ACTION ERRORS IN AADS AND KINEMATICS / GAZE 

The previous sections describe progress on the “technological” aspects of CogWatch in the 
area of error prediction through the development of different statistical task models.  The 
following sections describe progress on understanding how errors in AADS can be 
predicted using information about the kinematics and gaze of patients and healthy subjects. 

4.1 Task and Procedure 

In the version of the tea-making task tested here, participants are instructed to prepare a 
cup of tea with milk and one sugar cube. Thus, the following items were placed on the table: 
a kettle, teabags, milk, sugar cubes and an additional distractor item (instant coffee jar).  

The following conditions were tested: 

 Bimanual: use of both hands 

 Unimanual: use of the ipsilesional hand in patients and the dominant hand in healthy 
subjects, respectively 

 Unimanual: use of the contralesional hand in patients and the non-dominant hand in 
healthy subjects, respectively 

Every condition was repeated once, resulting in a maximum of six trials. The order was 
bimanual, unimanual (ipsilesional / dominant), unimanual (contralesional / non-dominant). 

 

 

Figure 9: Experimental setting for the tea-making task including a water jug, milk, a plate for 
used teabags, teabags, sugar, coffee, a kettle, a mug and a spoon. 
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The settings of the objects available in the task are shown in Figure 9. Starting positions for 
the left and the right hand are represented by the labeled papers. In the beginning of each 
trial, the water jug is filled with approximately 0.5 liters of preheated water, the milk carafe is 
filled, the teabag labels are prepared for an easy entanglement, particular in unimanual 
trials, and the kettle body is empty. The containers’ handles are directed towards the 
subject. 

Until now 9 controls and 7 CVA patients (3 with left brain and 4 with right brain damage) 
were tested and analyzed.  There were 67 trials in total, of which 41 were performed by 
controls, 16 by patients with right brain damage (RBD) and 10 by patients with left brain 
damage (LBD). Patients were recruited from the Clinic for Neuropsychology at the Hospital 
München-Bogenhausen in Munich. Patient's age ranges from 47 to 79 years with a mean of 
63 (±9.11) years and time since stroke between 0.5 and 6.5 years with a mean of 2.5 (±2.2) 
years. Controls had a mean age of 70.88 (±3.4) years. One of the LBD patients, 4 of the 
RBD patients and 3 of the control subjects were male. Subjects were tested for handedness 
by the Edinburgh Handedness Inventory. All CVA patients but one LBD patient, and all 
controls subjects but one were right handers, almost all of them strong (13). 

 

Table 1 - Demographic and clinical data of patients tested in the tea-making task. 

Code Age Sex Side of Brain Damage Paresis Time since Stroke EHI 

S20 47 M Left Yes 1y 1 

S22 70 W Left Yes 0.5y 1 

S36 63 W Left Yes 0.5y 0 

S85 70 M Right 
Yes 6.5y 0.68 

S93 58 W Right Yes 3y 1 

S96 79 M Right Yes 4y 1 

S115 64 M Right Yes 2y 0.8 

Mean 63 ± 8.33    2.5 ± 2.2  

Subjects are asked to wear a SMI-ETG eye tracking device during task performance. The 
eye tracking glasses incorporate a HD scene camera with a sampling rate of 30Hz. 
Fixations were identified and assigned to fixated objects off-line.  

Positional data of both hands were recorded with the use of 5 Oqus Motion Capture 
cameras included in a Qualysis motion capturing system with a sampling frequency of 
120Hz. Three passive markers were attached to each hand in the middle of the dorsum. For 
the analysis only one marker was used, the other two were attached for a better recording 
reliability and in case one or two markers got lost. 
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The mug, the milk carafe and the kettle's base and body had force and acceleration sensors 
with a sampling rate of 200Hz (now 50Hz, see elsewhere in this report) attached. These 
instrumented coasters are custom made by the University of Birmingham, UK. 

4.2 Segmentation 

In a first step data streams were synchronized using MatLab and a Visual C executable file. 
Then data were segmented into discrete actions and analyzed. The coarse boundaries of 
the action segments were manually defined via the SMI-ETG HD scene camera's video 
data. The fine adjustment of action-segments is then performed with the use of hand 
kinematics in MatLab. The whole task is segmented into the following eight action segments 
(Humphreys & Forde, 1998 in Forde et al., 2010): 

1. pour water in the kettle 
2. switch the kettle on 
3. place a teabag in the mug 
4. pour heated water into the mug 
5. remove the teabag 
6. add milk 
7. add one sugar cube 
8. stir the tea 

Figure 10 shows an example of action segmentation for one trial performed by a patient.  

 

Figure 10: Hand velocity and segments identified for a patients’ trial. Note that only segments 
1, 2, 3, 4, 6 & 7 were executed and their order was not strictly ascending. 

4.3 Errors 

For the analysis of errors performed in the task, the error classification of Hughes et al. 
(2013) was applied. This classification uses 12 different kinds of errors occurring in the tea-
making task: 

• Addition (AD)  adding an extra component action that is not required in the action sequence 

• Anticipation (AN)  performing an action earlier than usual 

• Execution (EX)  an error in the execution of the task 
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• Ingredient omission (IO) failing to add an ingredient required to complete the task goal 

• Misestimation (ME)  using grossly too much or too little of some substance 

• Mislocation (ML) an action that is appropriate to the object in hand but is performed in completely the 

wrong place 

• Ingredient substitution (IS) an intended action is carried out but with an unintended ingredient 

• Perseveration (PER)  the unintentional repetition of a step or subtask 

• Object substitution (OS) an intended action carried out with an unintended object 

• Quality (Q)   the action was carried out, but not in an appropriate way 

• Sequence (S)  performing an action much later than usual 

• Sequence omission (SO) an action sequence in which one step or subtask is not performed, despite the lack of 

any intention to omit the step or subtask 

Of these errors, 9 have been more or less frequently observed in the subjects performing 
the tea-making task. Figure 11 shows the average of errors per trial for each of these 9 
error-classes and the normalized (control = 1 with SD of 0.15) sum of errors per trial for the 
three groups of LBD and RBD patients and controls. 

 

 

Figure 11: Average number of errors per trial for 9 error-classes in controls and the two CVA 
patient groups. On the right the normalized sum of errors per trial is indicated. 

 

Note also that the control subjects performed a few errors but the patient group committed a 
higher number of errors, especially anticipation, execution, misestimation, quality and 
sequence omission errors. Interestingly the frequency of perseveration, sequence and 
sequence omission errors differed between patients with right and patients with left-sided 
brain damage but not anticipation errors. This indicates that right sided lesions more 
frequently cause problems organizing action sequences (ADS). Overall the LBD patients of 
the sample performed fewer errors than the RBD patients. 
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4.4 Relationship between action errors in AADS and kinematics 

4.4.1 Kinematic measures  

The positions and velocities of the hands were determined from the motion recordings and 
smoothed using a 1s LOESS filter ('local regression'). The following measures were 
determined for the complete action and the action segments: 

 maximum peak velocity 
 mean velocity peak 
 number of velocity peaks 
 movement times 
 path lengths 

The 'maximum peak velocity' describes the maximum tangential speed reached in the 
segment respectively in the full trial. 

The 'mean velocity peak' describes the average local maxima of the speed, so the subject's 
pace in the discrete movements ignoring pauses (not to be confused with the average 
speed). 

The 'number of velocity peaks' is calculated as an indicator of movement smoothness, since 
the tea-making task is a composition of mostly discrete movements. Caution is requested 
when comparing the differences between sub-segments, since the number of peaks in a 
reaching movement and in stirring the tea express different aspects of smoothness. 

The 'movement time' is the time taken to complete the single sub-segments respectively the 
whole task without the waiting period for the boiling of the water which is usually 
distinguished by resting hands. 

The 'path length' is the tangential distance traveled by the left and the right hand. The path 
length can be increased due to additional action as well as less goal-directed movements, 
changes of directions or even tremor. 

4.4.2 Results 

An analysis of kinematic peculiarities in sub-segments with error occurrence has so far been 
done for the errors ‘execution’, ‘misestimation’ and ‘quality’. The affected sub-segment was 
analyzed for error recognition and the preceding sub-segment for error prediction. Measures 
were compared with the mean of the sub-segment, group and condition with ± 2 standard 
deviations. 

Execution (EX) 

LBD patients performed 5 execution errors in 10 trials, RBD patients 6 in 16 trials and 
controls 5 in 41 trials. Affected sub-segments were: 

 #1 ‘pour water in the kettle’ in 4 cases 

 #3 ‘ place a teabag in the mug’ in 3 cases 
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 #4 ‘pour the heated water in the mug’ in 4 cases 

 #6 ‘add milk’ in 3 cases 

 #8 ‘stir the tea’ in 2 cases 

The analyses of the affected and of the preceding sub-segments showed only three outliers 
in 145 comparisons with no logical structure. 

 

 

Misestimation (ME) 

LBD patients performed 7 misestimation errors in 10 trials, RBD patients 14 in 16 trials and 
controls 15 in 41 trials. The affected sub-segments were: 

 #1 ‘pour water in the kettle’ in 6 cases 

 #4 ‘pour the heated water in the mug’ in 24 cases 

 #6 ‘add milk’ in 6 cases 

Note that only pouring actions were affected by misestimation errors in the tea-making task. 
The analyses for the affected and for the preceding sub-segments showed 24 outliers in 
390 comparisons. In sub-segment 4, affected by misestimation errors, subjects showed in 5 
cases (4 trials, one of them bimanual) increased mean velocity peaks. 
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Figure 12: Mean velocity peak for 4 outlying trials (bimanual values are from 1 trial) affected 
by misestimation errors in sub-segment 4 versus the corresponding mean of group and 
condition. 
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Although only in 4 out of 24 trials, subjects showed that this finding might be a first approach 
for error recognition via kinematics. The other measures and comparisons did not reveal 
any consistent pattern of kinematic features corresponding with misestimation errors in the 
sub-segments directly affected or preceding the affected sub-segment. 

Quality (Q) 

LBD patients performed 12 quality errors in 10 trials, RBD patients 21 in 16 trials and 
controls 31 in 41 trials. Affected sub-segments were: 

 #1 ‘pour water in the kettle’ in 35 cases 

 #3 ‘ place a teabag in the mug’ in 6 cases 

 #4 ‘pour the heated water in the mug’ in 10 cases 

 #5 ‘remove the teabag’ in 1 case 

 #6 ‘add milk’ in 2 cases 

 #7 ‘add one sugar cube’ in 2 cases 

 #8 ‘stir the tea’ in 4 cases 

The analyses for the affected and for the preceding sub-segments revealed only 19 outliers 
in 610 comparisons, with no logical pattern. Due to a quite complex mechanics for opening 
the kettle’s lid, segment 1 resulted in many quality errors in controls as well as in CVA 
patients.  

 

Figure 13: Occurrence of execution (EX), misestimation (ME) and quality (Q) errors in the eight 
sub-segments. 

4.4.3 Discussion 

4.4.3.1 Error classification 

The error classification system by Hughes et al. (2013) developed for more severe cases of 
stroke impairments could only partially be used in this study, since the patients tested in the 
TUMLab were mainly chronic stroke survivors and therefore had already received some sort 
of specific rehabilitation. So only 9 of the 12 error-classes were observed and there were no 
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fatal errors executed by the subjects. Even controls committed some errors. This might be 
due to their advanced age and the test situation, which stroke survivors are commonly 
better used to. 

RBD patients showed in average 2.94 times as many errors as controls per trial and LBD 
patients 1.73 (Fig. 4 & 5). The larger number of errors in RBD patients were usually linked 
to sequence production and apparently, the task of tea-making is quite demanding for 
patients with ADS symptoms. Interestingly LBD patients did not show a special pattern of 
errors as one might expect from the fact that LBD patients frequently suffer from apraxia. 
The reason might be that their symptoms were mild compared to the RBD patients or that 
the tea-making task is not that challenging for patients with symptoms of apraxia. 

4.4.3.2 Error recognition 

Among the three error types analyzed, only the misestimation error showed a slight, 
kinematic peculiarity of the mean peak velocity when segment 4 (‘pour the heated water into 
the mug’) was affected by an error. In the 4 out of a total of 24 trials the mean velocity was 
increased but neither path length increased nor movement time decreased. So error trials of 
this sub-segment must have been performed in a more discrete way. Since this feature 
appeared in all groups, the source of the observed behavior may not be necessarily related 
to brain damage but more probably to the advanced age of the subjects. A possible 
explanation could be a higher weight of a filled kettle in error trials that forces some subjects 
to move the container in a more stepwise way. 

4.4.3.3 Error prediction 

For the three error types no clear kinematic peculiarity was observed in the sub-segment 
preceding an error-affected sub-segment. This might change with upcoming analyses of the 
other 6 error types, since sequence errors might have preceding phases of confusion 
combined with longer movement times but this is still to be analyzed. Independently from 
kinematics, the probabilities of a specific error to occur in a particular segment can be taken 
into account for error prediction, since misestimation and quality errors occur more 
frequently in particular sub-segments. 

4.4.3.4 Conclusion 

We did not find strong indications of successful error recognition and prediction based on 
monitoring the subjects hand kinematics in these first results. Kinematics may however be 
able to support error recognition in specific cases. Nevertheless analyses of the 6 remaining 
error types classes and may provide useful results for errors linked to sequencing. 

4.5 Relationship between action errors in AADS and gaze 

4.5.1 Results 

4.5.1.1 Performance of healthy control subjects 

Figure 14 shows the fixation times on the objects of the task of tea-making in healthy 
controls. Overall fixation times during the different sub-segments show characteristic and 
expectable gaze behavior (Fig.6). For the analysis of gaze, the time windows for analyzing 
each segment was shifted forward in time since the eyes typically lead the hand. A gaze-
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kinematics shift of 0.61 seconds in the beginning and 0.56 in the end respectively has been 
used according to Land & Hayhoe (2001). 

 

Figure 14:  Fixation times in the different sub-segments during the task of tea-making in 
healthy controls. 

 

In segment 1 (‘pour water in the kettle’) the control group was mainly fixating the task 
relevant objects, the kettle and the water container. Other objects were also fixated, 
probably for locating purposes since the task is in 98% of the trials started with this 
segment. 
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In segment 2 (‘switch the kettle on’) the longest fixations were on the kettle and only a 
fraction of a second on the water container. This can be considered as a look-back strategy, 
as the preceding segment’s focus was the water container, which is needed to fill the kettle. 

In segment 3 (‘place a teabag in the mug’) fixations were mainly on the teabags but with a 
high variability. Gaze on the mug, which is the goal object of this segment, was consistent 
observed in that segment. The long fixations on the teabags can be explained by the 
entangling of the teabags, which was difficult, especially in the unimanual condition of the 
task. Segment 3 also contained short fixations on other objects such as the coffee, the milk 
or the sugar. This behavior may be associated with relocating intentions for planning. Gaze 
on the left hand is noticeable and might be due to insecurity of acting with the non-dominant 
hand. 

In segment 4 (‘pour the heated water into the mug’) mainly the kettle and the mug were 
fixated. A short period of fixating the milk at this point of the task is noticeable. Since 
segment 5 (‘remove the teabag’) is sometimes left out, segment 6 (‘add milk’) is in 12% of 
the trials the sub-segment following segment 4 and fixations of the milk may therefore 
reflect further action planning. 

Segment 5 (‘remove the teabag’) shows suitable times of object fixations with the prominent 
fixation time on the mug. This is most probably based on the fact that the teabag is taken 
from the mug which contains hot water. 

In segment 6 (‘add milk’), subjects fixated various objects with the longest fixation on the 
mug and a shorter on the milk. Note the fixations on the left hand and on the container for 
the used teabags. Since the milk was located on the left of the subject, it was commonly 
grasped with the left hand in the bimanual and only in the unimanual right hand condition 
with the right hand. This guiding gaze was presumably based on a weaker motor control of 
the non-dominant hand in the mostly right handed subjects. Fixating the container for the 
used teabags may be considered as look-back, since segment 6 follows segment 5 in 56% 
of the trials. This quite prominent fixations might be due to assuring that the task is almost 
complete, as in 49% of the trials segment 8 (‘stir the tea’) follows segment 6 as a finishing 
segment and in 12% of the trials they directly finish with segment 6. 

In segment 7 (‘add one sugar cube’) the fixation times describe a typical grasping and 
dropping action with rather short fixations on the sugar cubes and longer fixations on the 
mug the latter being the goal of the action. 

Segment 8 (‘stir the tea’) shows a wide distribution of fixated objects. Although the mug 
receives the highest attention almost all other allocated objects are also fixated. Given that 
this is the last task segment when preparing the tea, controls fixate already used objects to 
reassure that they performed well and did not leave out any important steps. 

For the first segments, one reason for continuous fixations of the kettle in almost all sub-
segments may be that when waiting for the boiling of the water, subjects usually start to 
perform other sub-segments (e.g. placing a teabag or sugar into the mug), but are 
repeatedly checking the kettle for the temperature on the display or via the steam coming 
out of the kettle. 

4.5.1.2 Performance of CVA patients 

Fixation Times 
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Figure 15 shows the fixations times of the control group and of the patients in the sub-
segments of the tea-making task. The patients produced longer fixation times in all sub-
segments but segment 8 (‘stir the tea’) (Figure 14). This might be due to less reassuring 
whether they performed correctly. 

 

 

Figure 15: Seconds of fixation during the performance of the tea making segments in patients 
compared to healthy controls 

 

While both groups showed a comparable gaze pattern for the water container in segment 1 
(‘pour water in the kettle’), the fixation time of the kettle in patients with approximately 8 
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seconds is clearly increased. It seems that patients needed more time for checking and 
guiding the action of filling the kettle. 

While in segment 2 (‘switch the kettle on’) the controls only focused on the kettle and the 
water container but not on the sugar, the teabags or the mug, the patients fixated these 
objects, especially the mug. The next segments are usually segment 3, 4 and 7, which are 
using the teabags (3), the kettle (4) and the sugar (7) and all these segments end with 
putting something into or filling the mug. These looks can therefore be considered as look-
aheads for ongoing action planning that seems aggravated or impaired when contrasting to 
the control group. 

In segment 3 (‘place a teabag in the mug’) patients fixated the mug longer than controls. 
This could indicate that dealing with the swinging of the teabag when placing it into the mug 
was particularly difficult for the patients. Patients also fixated the sugar and the coffee that 
are both in containers of the same kind as the teabags. This could be a hint for an impaired 
locating mechanism in the beginning of the task and/or during object recognition. 

In segment 4 (‘pour the heated water into the mug’) both groups fixated the kettle longer 
than the mug, which seems surprising for a filling action. This could have been due to 
hesitations because the kettle was quite heavy for an elderly person and contained hot, 
steaming water. Also, patients looked at their left hand, possibly indicating insecurity and 
efforts to control the impaired hand (in RBD patients). 

In segment 5 (‘remove the teabag’) there was almost no fixation on the used teabags in the 
patient group in comparison with the control group. It is also worth to be mentioned that 
patients exhibited longer fixations of the sugar and the milk than of the container for the 
used teabags in this segment. Since CVA patients finished the task with segment 5 in 44% 
of the trials and continue with segment 6 in 33% and with segment 7 in 11% of the trials 
these fixations can be considered either look-backs for assurance of a successful task 
completion or look-aheads for the upcoming segments 6 or 7. 

In segment 6 (‘add milk’) fixations of the teabags and the left hand can be observed in the 
patient group but not in the control group. While the milk not surprisingly catches most of the 
attention in both groups, the patient group once more shows fixations of the left hand. 
Problems in motor control were probably responsible for the prolonged fixations of the left 
hand in this group. Gaze on the teabags is most probably a look-back as in 33% of the trials 
segment 5 precedes 6. 

In segment 7 (‘add one sugar cube’) the patient group shows longer fixations of the kettle. 
This can be explained by a different order of sub-segments in the patient group. The 
controls usually add the sugar after filling the mug with water while patients in several trials 
add the sugar beforehand. 

Segment 8 (‘stir the tea’) has fixations on the coffee, the sugar and the teabags. This again 
is a hint for an impaired locating mechanism in the beginning of the task and / or during 
object recognition. Note the shorter fixation times on the kettle, the milk and the used 
teabags. All these objects are allocated on the peripheral working surface for the tea-
making task. 

In conclusion, the fixation patterns of the patient group show more inappropriate fixations 
and differ from the controls. Also, patients show more fixations of their left hand, presumably 
due to problems in motor control. 
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4.5.1.3 Gaze and error 

For the analysis of errors in the context of gaze, so far 3 classes of errors have been used: 

 Execution errors (EX) 

 Misestimation errors (ME) 

 Quality errors (Q) 

For the exploration of the relationship between performance errors and gaze behavior, the 
fixations times on the objects in the affected and the preceding sub-segment were analyzed 
qualitatively. 

Execution errors 

In two of three segments with execution errors, patients showed unnecessary fixations of 
the teabags, both subjects being RBD patients. The execution errors happened in segments 
with pouring actions (4 & 6). This is an interesting finding but needs more than two cases to 
be indicative of a regular association. Overall only 16 execution errors were observed in a 
total of 67 trials. 

Misestimation errors 

Analyzing the 36 misestimation errors in the context of gaze, 5 trials showed peculiarities in 
the affected segment. 4 trials showed peculiarities in the preceding segment. In the affected 
segments patients had either missing fixations of the container to be filled (mug or kettle), 
prolonged fixation times on the kettle (in one case almost 12 seconds) or unnecessary 
fixations of the teabags (slightly shorter than a second). In the preceding sub-segments, 
gaze was on the left hand for almost 7 seconds in one case and in 4 trials on momentarily  
irrelevant objects, mainly on the coffee (distractor item), the sugar and the teabags. In 4 out 
of these 5 trials the affected sub-segment was segment 4 (‘pour the heated water into the 
mug’) which is usually followed by segments with a more variable order like adding milk or 
sugar, removing the teabag or stirring the tea. 

Quality errors 

In total there were 64 quality errors in the analyzed 67 trials of patients and controls. Of 
these, 11 showed peculiarities in the gaze behavior, most of them in RBD patients. In some 
cases patients showed fixations of their left hand or of all ingredient objects, like the coffee, 
the sugar or the milk, and particularly the teabags and the coffee, also in the preceding sub-
segment. Quality errors of control subjects were on the other hand associated with a low 
number of fixations of task relevant objects like the water container when filling the kettle. 

Discussion 

Execution errors in the patients probably result from deficits of motor control or from a 
reduced attentional focus on the current action. This reduced focus can be recognized by 
fixations on momentarily irrelevant objects.  

Errors of misestimation can take place if the filling level of a container is not checked. This 
was the case in 4 out of 5 trials with gaze peculiarities. But even if the filling level is 
checked, a reduced focus on the current task can lead to misestimations. This is reflected 
by unnecessary fixations of the teabags or fixation times reaching up to 12 seconds, 
resulting from high demands for handling of the kettle. 
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Quality errors can occur due to an incorrect or careless handling of an object, deficient 
motor performance due to an impaired hand or an incomplete object preparation for a 
following action (e.g. the teabag is still in the mug when the subjects starts stirring the tea 
and therefore the spoon gets entangled). Symptoms of these causalities are observable in 
the fixation of the left hand, missing fixations of a task relevant object and fixations of the 
distractor item (coffee). 

4.5.2 Conclusion 

Gaze patterns are characteristic for the different sub-tasks in the segments. These patterns 
are however not constant for a certain segment, but can vary substantially within and 
between subjects. In addition, the uniqueness of a pattern depends on the different sub-
tasks. In addition, stroke patients and age-matched control subjects exhibit partly different 
gaze patterns although the difference is not necessarily related to errors. For example, 
patients tend to look frequently to the impaired hand. Therefore, action recognition based on 
gaze information would not be 100% precise. Nevertheless informing models like the 
Hidden Markov Models employed in the CogWatch system about gaze would almost 
certainly increase the precision of automatized action recognition, in particular if the models 
are tolerant to variability. Another advantage of gaze information is that the pattern would be 
up to a certain degree independent of the spatial position of the objects that may be moved 
around in natural conditions of daily activities. 

It also seems that fixation patterns and fixation times have the potential to support the 
recognition and prediction of errors in the performance of the tea-making task. Since gaze 
leads action, fixations could be used to predict following actions and even errors. 
Implementing eye-tracking and an automatized fixation analysis could therefore provide a 
valuable contribution in recognizing and predicting errors. 

Employing the method in the CogWatch system is not possible at the moment since reliable 
online gaze recognition is not available yet. There are however strong technical 
developments in the fields of eye-movement recordings and computer vision that may make 
this technology available soon.  
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5. CONCLUSIONS 

This report has been concerned with predictive models in the CogWatch project.   The first 
part of the report, sections 3.3 described the technology that underpins the development of 
the task model (TM) in P1.2, for the tea-making task, and which will be included in P2 for 
the tooth-brushing task.  The second part, section 4, described psychological experiments 
aimed at measuring the extent to which knowledge of body kinematics and gaze can be 
used to predict errors in the tea-making task. 

In CogWatch, the purpose of the TM is to monitor a user’s progress through the task, to 
detect errors and to provide sufficient information to the CogWatch system for useful cues to 
be created.  The rationale for choosing a Markov Decision Process (MDP) based approach 
to task modelling was presented in deliverable D3.3.1.  An MDP-based TM for tea-making 
has been developed at UOB using a hierarchical description of the task.  The TM is 
implemented in Python and has been fully integrated into the C# environment of the 
CogWatch system.  In addition, a program was written to simulate a user of the system (the 
‘SimU’) based on statistics of sub-goal sequences observed in trials of patients and healthy 
controls.  The SimU allowed a substantial number of ‘experiments’ to be conducted to 
evaluate the TM.  The evaluations are in terms of the user task completion rate as a 
function of the accuracy of the action recognition (AR) system, and the compliance of the 
user (i.e. whether the user follows the cues created in response to the TM outputs).  For 
example, with an AR error rate of 10% the TM achieves a user completion rate greater than 
90%. 

Some degree of AR error is inevitable.  Therefore the more recent research focussed on 
developing a TM that is robust against such errors.  The new TM uses a Partially 
Observable (MDP).  The key difference between the MDP and POMDP TMs is that while 
the MDP maintains a single estimate of the state of the user in the task, the POMDP ‘belief 
state’ is a distribution over all of the MPD states.  Experiments have shown that the 
POMDP-based TM can support user task completion rates of 90% with AR error rates 
greater than 20%. 

Section 4 describes experiments conducted at TUM to measure the relationship between 
action errors in the tea-making task and user kinematics and gaze.  The objective is to 
provide the psychological basis for incorporating this type of information for error prediction 
in future TMs.  Sixty-seven trials were conducted, of which 41 were performed by controls, 
16 by patients with right brain damage (RBD) and 10 by patients with left brain damage 
(LBD).  During trials subjects wore a SMI-ETG eye tracking device and their movements 
were tracked using the Qualysis system.  The data streams were synchronized, segmented 
into sub-goals, and errors were categorized according to the scheme proposed by Hughes 
et al. (2013).  Analyses were conducted on segments exhibiting errors for error detection, 
and on the previous segment for error prediction. 

The main conclusions of the study are that error recognition and prediction based on 
monitoring the subjects hand kinematics does not appear to be viable.  However, fixation 
patterns and fixation times do have the potential to support the recognition and prediction of 
errors. Since gaze leads action, fixations could be used to predict following actions and 
even errors. Incorporation of eye-tracking and an automatized fixation analysis into the TM 
could provide a valuable contribution in recognizing and predicting errors. 
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